(anonymous)  •  log in  
Home   •   Rules   •   Objects   •   Census   •   Software   •   Syntheses   •   Statistics

xp96_ylgc2h520g8gzyl8l5dxdl8zym12452zyuccydc871zqr10330jmyqoooz6c0cc08d5yao808oy632023yakm206606czyk333yqdp0oo0grbzy5gs26yd66zyv8k48gzyr2lmxmkl2zyr12108kh861

#C [[ GRID THUMBLAUNCH THUMBSIZE 2 THEME Catagolue ]]
x = 1, y = 1, rule = B3/S23
b!
This pattern is an oscillator.
This pattern is periodic with period 96.
This pattern runs in standard life (b3s23).
The population fluctuates between 178 and 416.
This evolutionary sequence works in multiple rules, from b3s23 through to b3s234c6i8.

Pattern RLE

Code: Select all

Glider synthesis

Code: Select all
#C [[ GRID MAXGRIDSIZE 14 THEME Catagolue ]]
#CSYNTH xp96_ylgc2h520g8gzyl8l5dxdl8zym12452zyuccydc871zqr10330jmyqoooz6c0cc08d5yao808oy632023yakm206606czyk333yqdp0oo0grbzy5gs26yd66zyv8k48gzyr2lmxmkl2zyr12108kh861 costs 60 gliders (true).
#CLL state-numbering golly
x = 758, y = 90, rule = B3/S23
376bo$377b2o307bo$376b2o309bo$391bo293b3o$391bobo$391b2o2$692bobo$
693b2o$473bo219bo$473bo69b2o83b2o$380bobo3bo86bo68b4o81b4o$381b2o
2bo145bo9bob2ob2obo76bob2ob2obo86b2ob2obo$381bo3b3o60bo21bo61bo13b
2o2bo80b2o2bo84b2o2b2ob2o$446bobo20bobo58b3o8b2o2b2o2b3o74b2o2b2o
2b3o91bo$447b2o21bo70b4obo2b3o74b4obo2b3o83b2o$534b3o3bo2bo3bo2bo
3b3o68bo2bo3bo2bo84b2o5b2o$269bo94bo85bo21b2o65b3o2bob4o74b3o2bob
4o92b2o$268bobo92bobo83bobo20bobo64b3o2b2o2b2o8b3o63b3o2b2o2b2o67b
o17bo$269bo94bo85bo21bo67bo2b2o13bo66bo2b2o73b2o15b2ob2o2b2o$541bo
b2ob2obo9bo66bob2ob2obo67b2o17bob2ob2o$361bo85bo97b4o81b4o$265b3o
93bo85bo98b2o83b2o66b2o$361bo85bo250bobo12bo$177bo522bo13b2o$175b
2o536b2o$96bo25bo53b2o$94bobo25bobo586bo$95b2o25b2o585bobo17bo$
178b2o530b2o17bobo$177b2o550b2o$179bo$2bo25bo$obo25bobo$b2o25b2o$
101bo15bo$102b2o11b2o443bo5bo78bo5bo$101b2o13b2o92bo3bo80bo3bo90bo
3bo81bo3bo78b3o3b3o52bo23b3o3b3o87bo3bo$208b2obobob2o76b2obobob2o
87bobobobo79bobobobo76bobobobobobo49bobo22bobobobobobo84b2obobob2o
$155b2o50bo3bobo3bo74bo3bobo3bo87b2ob2o81b2ob2o76b2obobobobob2o49b
2o21b2obobobobob2o82bo3bobo3bo$108bo47b2o48bo3b2ob2o3bo72bo3b2ob2o
3bo84b3o3b3o160bob4ob4obo72bob4ob4obo81bo3b2ob2o3bo$7bo15bo84b2o
45bo50bobo7bobo72bobo7bobo43bo5bo33b2o7b2o75bo9bo73b5o3b5o72b5o3b
5o81bobo7bobo$8b2o11b2o84bobo97bo9bo74bo9bo44bo5bo32b3obo3bob3o73b
o11bo134b2o90b2o24bo9bo$7b2o13b2o41bo3bo42b2o54bo3bo80bo3bo87b4o3b
4o29b2o3b2ob2o3b2o33b2o3b2o32bo3b2ob2o3bo34bo3bo80bo3bo9b2o78bo3bo
8b2o$64bobobobo41bobo52bobobobo36b2ob2o37bobobobo36b2ob2o44b2o9b2o
28b3o2b2ob2o2b3o32b2obobob2o32b3obobob3o34bobobobo36b2ob2o37bobobo
bo10bo25b2ob2o46bobobobo36b2ob2o$65b2ob2o42bo55b2ob2o36bobobobo37b
2ob2o36bobobobo42b3o2b2ob2o2b3o28b2o9b2o32b3obobob3o32b2obobob2o
36b2ob2o36bobobobo37b2ob2o25bo10bobobobo46b2ob2o36bobobobo$14bo
195bo3bo80bo3bo43b2o3b2ob2o3b2o29b4o3b4o32bo3b2ob2o3bo32b2o3b2o79b
o3bo69b2o9bo3bo79b2o8bo3bo$14b2o149bo9bo74bo9bo83b3obo3bob3o32bo5b
o34bo11bo191b2o59bo9bo24b2o$13bobo45b2o9b2o90bobo7bobo72bobo7bobo
50bo32b2o7b2o33bo5bo35bo9bo73b5o3b5o72b5o3b5o81bobo7bobo$18b2o41bo
b4ob4obo21bo27bo40bo3b2ob2o3bo72bo3b2ob2o3bo48b2o34b3o3b3o160bob4o
b4obo72bob4ob4obo81bo3b2ob2o3bo$18bobo41bo3bobo3bo22b2o25b2o41bo3b
obo3bo74bo3bobo3bo50b2o35b2ob2o81b2ob2o76b2obobobobob2o72b2obobobo
bob2o21b2o59bo3bobo3bo$18bo43bo3bobo3bo21bobo25bobo41b2obobob2o76b
2obobob2o87bobobobo79bobobobo76bobobobobobo74bobobobobobo22bobo59b
2obobob2o$63b3o3b3o96bo3bo80bo3bo90bo3bo81bo3bo78b3o3b3o76b3o3b3o
23bo63bo3bo$518bo5bo78bo5bo$101b3o11b3o$bo27bo73bo11bo$b2o25b2o72b
o13bo$obo25bobo$288bo$289b2o421b2o$7b3o11b3o264b2o421bobo17b2o$9bo
11bo691bo17bobo$8bo13bo708bo$290b2o$291b2o435b2o$290bo436b2o13bo$
381bo85bo261bo12bobo$381bo85bo69b2o83b2o118b2o$381bo85bo68b4o81b4o
$525bo9bob2ob2obo76bob2ob2obo86b2ob2obo17b2o$378bo63bo21bo61bo13b
2o2bo80b2o2bo84b2o2b2ob2o15b2o$377bobo60bobo20bobo58b3o8b2o2b2o2b
3o74b2o2b2o2b3o91bo17bo$378bo62b2o21bo70b4obo2b3o74b4obo2b3o83b2o$
528b3o3bo2bo3bo2bo3b3o68bo2bo3bo2bo84b2o5b2o$444bo21b2o65b3o2bob4o
74b3o2bob4o92b2o$443bobo20bobo64b3o2b2o2b2o8b3o63b3o2b2o2b2o85bo$
355b3o3bo82bo21bo67bo2b2o13bo66bo2b2o90b2ob2o2b2o$357bo2b2o173bob
2ob2obo9bo66bob2ob2obo86bob2ob2o$356bo3bobo78bo97b4o81b4o$441bo98b
2o83b2o$441bo307bo$748b2o$748bobo2$350b2o$349bobo$351bo403b3o$365b
2o388bo$364b2o390bo$366bo!

Sample occurrences

There are 11 sample soups in the Catagolue:

Unofficial symmetries

SymmetrySoupsSample soup links

b3s23osc_stdin 10              

oscthread_stdin 1  

Comments (0)

There are no comments to display.

Please log in to post comments.

Catagolue — the largest distributed search of cellular automata.