(anonymous)  •  log in  
Home   •   Rules   •   Objects   •   Census   •   Software   •   Syntheses   •   Statistics

120P7 with blinkers (xp7_y41hh0gxg0hh1zoxgo8gjdcb43034bcdjg8ogxoz1x5aa530252x252035aa5x1zoxql5qs04a4x4a40sq5lqxoz1y0110crjdic0cidjrc011y01zy4888y3888)

#C [[ GRID THUMBLAUNCH THUMBSIZE 2 THEME Catagolue ]]
x = 1, y = 1, rule = B3/S23
b!
This pattern is an oscillator.
This pattern is periodic with period 7.
This pattern runs in standard life (b3s23).
The population fluctuates between 144 and 240.
This evolutionary sequence works in multiple rules, from b3-cs23 through to b34cryz5ij6ce7e8s234cejkz5aekr6in78.

Pattern RLE

Code: Select all

Glider synthesis

Code: Select all
#C [[ GRID MAXGRIDSIZE 14 THEME Catagolue ]]
#CSYNTH xp7_y41hh0gxg0hh1zoxgo8gjdcb43034bcdjg8ogxoz1x5aa530252x252035aa5x1zoxql5qs04a4x4a40sq5lqxoz1y0110crjdic0cidjrc011y01zy4888y3888 costs 113 gliders (true).
#CLL state-numbering golly
x = 844, y = 331, rule = B3/S23
519bo$520bo$518b3o2$514b3o$516bo4bobo$515bo5b2o$522bo23$567bo$566b
o$566b3o3$503bobo$504b2o$504bo29$429bo12bo171bo10bobo$430b2o11b2o
167b2o11b2o$429b2o11b2o169b2o11bo6$456bo$457b2o141bo$456b2o140b2o$
599b2o2$429bobo153bo9bo29bobo$430b2o151b2o10bobo27b2o$430bo153b2o
9b2o29bo$450bo$451b2o$450b2o6bo$456bobo$457b2o$609bobo$609b2o$610b
o4$438bobo167bo8bobo$439b2o129b3o34bo9b2o$439bo130bo36b3o8bo$443bo
127bo$444bo$442b3o10$442bobo$443b2o$443bo11$457bo$457bobo$457b2o2$
395bo$393bobo$394b2o13$658bo$656b2o$254bo402b2o$253bo487bo84bo$
253b3o485bobo80bobo$248bobo486bo3b2o82b2o3bo$249b2o487bo90bo$245bo
3bo486b3o90b3o$246bo55bo22bo$244b3o53bobo22bobo211b2o$301b2o16bo5b
2o4bo200bo6b2o275bo$305bo12bobo9bo200bobo155bo126bo$304bo13b2o10b
3o198b2o154bobo126bo$299bo4b3o205b2o2b2o21b2o147b2o$223bo76bo26b2o
183b2o2b2o21b2o$221bobo74b3o26bobo361bo48b5o3b5o11bo38bo11b5o3b5o$
84bo40b2o47b2o46b2o13b2o69b2o17bo193b2o168bobo46bo2bobobobo2bo11bo
bo34bobo11bo2bobobobo2bo$82b2o40bo2bo45bo2bo11b2o46bo2bo11b2o54bo
2bo11b2o196bo2bo11b2o154b2o47bo2bobobobo2bo11b2o36b2o11bo2bobobobo
2bo$83b2o4bo34bo2bo7bo4bo32bo2bo10bo2bo45bo2bo10bo2bo53bo2bo10bo2b
o195bo2bo10bo2bo149b2o51bo3bo3bo3bo62bo3bo3bo3bo$88bo36b2o6bobo3b
2o33b2o11bo2bo33b2o11b2o11bo2bo54b2o11bo2bo196b2o11bo2bo148b2o48b
4o3bo5bo3b4o54b4o3bo5bo3b4o$88b3o38b2o3b2o3bobo36b2o8b2o35b2o14b2o
8b2o48bo10b2o8b2o190bo10b2o8b2o151bo47bo6bo5bo6bo9b3o30b3o9bo6bo5b
o6bo2b3o$129b2o47b2o44bo16b2o57bobo9b2o199bobo9b2o209bo6bo5bo6bo9b
o34bo9bo6bo5bo6bo$82b3o100b2o61b2o51b2o16b2o193b2o16b2o202b3ob3obo
3bob3ob3o10bo32bo10b3ob3obo3bob3ob3o$84bo100b2o40b2o19b2o69b2o211b
2o202bo2bo3bo5bo3bo2bo54bo2bo3bo5bo3bo2bo$41bo41bo53b2o87bobo508b
2o15b2o56b2o15b2o$39bobo95bobo88bo31bo$o39b2o95bo122bobo474b2o15b
2o56b2o15b2o$b2o81b2o41b2o47b2o61b2o19b2o48b2o211b2o211bo2bo3bo5bo
3bo2bo54bo2bo3bo5bo3bo2bo$2o82b2o41b2o47b2o61b2o69b2o16b2o193b2o
16b2o182bo10b3ob3obo3bob3ob3o54b3ob3obo3bob3ob3o10bo$4b3o41b2o41b
2o41b2o47b2o61b2o16bo52b2o9bobo199b2o9bobo182bo9bo6bo5bo6bo54bo6bo
5bo6bo9bo$6bo30bobo3b2o3b2o31b2o8b2o31b2o8b2o37b2o8b2o51b2o8b2o14b
2o43b2o8b2o10bo38bo151b2o8b2o10bo181b3o9bo6bo5bo6bo49b3o2bo6bo5bo
6bo9b3o$5bo32b2o3bobo34bo2bo39bo2bo45bo2bo13bo45bo2bo11b2o11b2o41b
o2bo11b2o46b2o148bo2bo11b2o200b4o3bo5bo3b4o54b4o3bo5bo3b4o$38bo4bo
36bo2bo39bo2bo45bo2bo11b2o46bo2bo10bo2bo53bo2bo10bo2bo44b2o149bo2b
o10bo2bo203bo3bo3bo3bo62bo3bo3bo3bo$81b2o41b2o47b2o13b2o46b2o11bo
2bo54b2o11bo2bo40b2o154b2o11bo2bo190b2o11bo2bobobobo2bo62bo2bobobo
bo2bo11b2o$250b2o13b2o36bo17b2o40bobo168b2o190bobo11bo2bobobobo2bo
62bo2bobobobo2bo11bobo$265bobo33bobo26b3o32bo362bo11b5o3b5o62b5o3b
5o11bo$265bo36b2o26bo185b2o21b2o2b2o$188b3o133b3o4bo35b2o147b2o21b
2o2b2o$188bo109b3o10b2o13bo40bobo154b2o300bo$189bo110bo9bobo12bo
41bo155bobo300bo$299bo4b2o5bo16b2o186b2o6bo301bo$242b3o58bobo22bob
o185b2o$242bo62bo22bo$239bo3bo510b3o54b3o$238b2o514bo58bo$238bobo
509b2o3bo56bo3b2o$233b3o513bobo64bobo$235bo515bo64bo$234bo163b2o$
399b2o$398bo13$661b2o$661bobo$661bo2$598b2o$597bobo$599bo11$613bo$
612b2o$612bobo10$612b3o$612bo$485bo127bo$438bo8b3o36bo130bo$438b2o
9bo34b3o129b2o$437bobo8bo167bobo4$446bo$446b2o$445bobo$598b2o$598b
obo$598bo6b2o$604b2o$606bo$430bo29b2o9b2o153bo$430b2o27bobo10b2o
151b2o$429bobo29bo9bo153bobo2$456b2o$457b2o140b2o$456bo141b2o$600b
o6$430bo11b2o169b2o11b2o$430b2o11b2o167b2o11b2o$429bobo10bo171bo
12bo29$552bo$551b2o$551bobo3$488b3o$490bo$489bo23$534bo$534b2o5bo$
533bobo4bo$540b3o2$536b3o$536bo$537bo!

Sample occurrences

There are 2 sample soups in the Catagolue:

Official symmetries

SymmetrySoupsSample soup links

D8_1 2   

Comments (2)

Displaying comments 1 to 2.

On 2022-12-15 at 20:49:24 UTC, dronebetterdronebetter wrote:

Apologies, it is only 120P7 hassling blinkers, the one that I linked is comprised of noninteracting blinkers

On 2022-12-15 at 18:55:38 UTC, dronebetterdronebetter wrote:

Discovered by Charity Engine on 2022-11-17, can have blinkers moved one cell away to be instead xp14_y77y57zy68micge0egcim8z222x6a9m409k8x8k904m9a6x222zy25ll8wg8gxg8gw8ll5z222x3243h8ch8g0g8hc8h3423x222zy732103030123zy77y57

Please log in to post comments.

Catagolue — the largest distributed search of cellular automata.