(anonymous)  •  log in  
Home   •   Rules   •   Objects   •   Census   •   Software   •   Syntheses   •   Statistics

p61 pi-heptomino hassler (xp61_yddb8oz0oggmicggkcx6513zca260743zy066y74ehryfok46zy1ggkcyfc4ogy7ggzy11yi321y7gh1g08ozytggxok47o7k55dzyoc88r221y411zyq32)

#C [[ GRID THUMBLAUNCH THUMBSIZE 2 THEME Catagolue ]]
x = 1, y = 1, rule = B3/S23
b!
This pattern is an oscillator.
This pattern is periodic with period 61.
This pattern runs in standard life (b3s23).
The population fluctuates between 134 and 252.
This evolutionary sequence works in multiple rules, from b3s23 through to b38s234c6i.

Pattern RLE

Code: Select all

Glider synthesis

Code: Select all
#C [[ GRID MAXGRIDSIZE 14 THEME Catagolue ]]
#CSYNTH xp61_yddb8oz0oggmicggkcx6513zca260743zy066y74ehryfok46zy1ggkcyfc4ogy7ggzy11yi321y7gh1g08ozytggxok47o7k55dzyoc88r221y411zyq32 costs 65 gliders (true).
#CLL state-numbering golly
x = 1018, y = 110, rule = B3/S23
213bo$214bo$212b3o14$302bobo$302b2o$229bo73bo$230bo$228b3o58bo$
287b2o$288b2o6$232bobo$233b2o$233bo4$242bobo$243b2o$243bo5$740bo$
741bo$739b3o$749bo$747bobo$748b2o$253bobo$254b2o106b2o74b2o79b2o
68b2o67b2o112b2o70b2o70b2o70b2o$254bo103b2obobo70b2obobo75b2obobo
64b2obobo63b2obobo108b2obobo66b2obobo66b2obobo66b2obobo$359bobo73b
obo78bobo6bo60bobo66bobo111bobo69bobo69bobo69bobo$359bob2o72bob2o
77bob2o4bo61bob2o65bob2o88bo21bob2o68bob2o68bob2o68bob2o$356b2obo
66bo5b2obo77b2obo7b3o56b2obo6b2o57b2obo6b2o84bo17b2obo6b2o60b2obo
6b2o60b2obo6b2o60b2obo6b2o$356bo2b4o64bo4bo2b4o74bo2b4o63bo2b4o3b
2o57bo2b4o3b2o82b3o17bo2b4o3b2o60bo2b4o3b2o60bo2b4o3b2o60bo2b4o3b
2o6b2o$357b2o3bo62b3o5b2o3bo75b2o3bo64b2o3bo63b2o3bo108b2o3bo66b2o
3bo66b2o3bo66b2o3bo11bo$359b3o60bo12b3o78b3o8b2o57b3o66b3o111b3o
69b3o69b3o13bo55b3o10bobo$359bo62b2o11bo73b2o5bo10bobo49b2o5bo61bo
6bo106bo6bo71bo71bo14b2o55bo12b2o$421bobo9bobo39bobo30bo5bobo10bo
50bo5bobo61b2o3bobo106b2o3bobo69bobo69bobo14bobo52bobo$433b2o40b2o
34bo2b2o65bo2b2o62b2o3b2o107b2o3b2o70b2o70b2o10b3o57b2o$426b3o47bo
32b2o68b2o68bo113bo161bo$264bo163bo245bo249bo$262bobo162bo15bobo
228b2o$226b2o35b2o178b2o28bo199bobo162b2o70b2o70b2o$225bobo216bo
27bo41bo69bo68bo113bo69bobo69bobo69bobo$227bo244b3o38bobo67bobo66b
obo111bobo68bo71bo71bo$263b2o249bobo67bobo66bobo19b3o89bobo62bob2o
b2o65bob2ob2o65bob2ob2o$264b2o249b2o68b2o67b2o19bo92b2o62b2obo68b
2obo68b2obo$263bo412bo158bo71bo71bo15bo$835b2o70b2o70b2o12b2o$994b
2o$693bo305bobo$2bo278b3o407b2o306b2o$obo278bo410b2o60b2o237bo6bo$
b2o234b2o43bo472b2o236b2o$238b2o132bo381bo237bobo$237bo98bo33bobo
625b2o$336b2o33b2o2b2o420b2o70b2o70b2o56b2o12b2o$20bobo312bobo38b
2o393bo26bo71bo71bo55bo15bo$20b2o353bo163b2o68b2o67b2o92bo25bob2o
68bob2o68bob2o68bob2o$21bo517bobo67bobo66bobo89b3o22b2ob2obo65b2ob
2obo65b2ob2obo65b2ob2obo$419b3o118bobo67bobo66bobo114bo71bo71bo71b
o$421bo27bo91bo69bo68bo113bobo69bobo69bobo69bobo$79bo5b2o88bo244bo
28b2o321bobo19b2o70b2o70b2o70b2o$20b3o55bobo3bobo86bobo272bobo15bo
305b2o$20bo56bo2bo2bobo88b2o3bobo283bo307bo79bo$21bo56b2o4bo94b2o
236bo47b3o77b2o68b2o67bo167bo$180bo101b2o99b2o32b2o40b2o79b2o2bo
65b2o2bo64b2o3b2o107b2o57b3o10b2o70b2o70b2o$281bobo98bobo31bobo39b
obo9bobo66bobo5bo50bo10bobo5bo60bobo3b2o106bobo52bobo14bobo69bobo
69bobo$136bo37bo106bo100bo75bo11b2o67bo5b2o49bobo10bo5b2o61bo6bo
106bo55b2o14bo57b2o12bo57b2o12bo$83b2o3bobo43b3o35b3o104b3o98b3o
73b3o12bo65b3o57b2o8b3o66b3o111b3o55bo13b3o56bobo10b3o56bobo10b3o$
82b2o4b2o43bo3b2o32bo3b2o101bo3b2o95bo3b2o70bo3b2o5b3o67bo3b2o64bo
3b2o63bo3b2o108bo3b2o66bo3b2o54bo11bo3b2o54bo11bo3b2o$84bo4bo43b4o
2bo31b4o2bo100b4o2bo94b4o2bo69b4o2bo4bo69b4o2bo63b4o2bo57b2o3b4o2b
o17b3o82b2o3b4o2bo60b2o3b4o2bo52b2o6b2o3b4o2bo52b2o6b2o3b4o2bo$
136bob2o34bob2o103bob2o97bob2o72bob2o5bo71bob2o56b3o7bob2o57b2o6bo
b2o17bo84b2o6bob2o60b2o6bob2o60b2o6bob2o60b2o6bob2o$133b2obo34b2ob
o103b2obo97b2obo72b2obo77b2obo61bo4b2obo65b2obo21bo88b2obo68b2obo
68b2obo68b2obo$134bobo35bobo104bobo98bobo73bobo78bobo60bo6bobo66bo
bo111bobo69bobo69bobo69bobo$93b2o37bobob2o32bobob2o101bobob2o95bob
ob2o70bobob2o75bobob2o64bobob2o63bobob2o108bobob2o66bobob2o66bobob
2o66bobob2o$30b2o60b2o38b2o36b2o105b2o99b2o74b2o79b2o68b2o67b2o
112b2o70b2o70b2o70b2o$29b2o63bo$31bo666b2o$100bo37b2o558bobo$99bo
38b2o558bo$99b3o604b3o$77bo56b3o569bo$77b2o57bo570bo$76bobo18b2o
36bo$97bobo$97bo$62b2o$63b2o$62bo!

Sample occurrences

There are 19 sample soups in the Catagolue:

Unofficial symmetries

SymmetrySoupsSample soup links

b3s23osc_stdin 4     

mvr_catforce_stdin 14                   

oscthread_stdin 1  

Comments (0)

There are no comments to display.

Please log in to post comments.

Catagolue — the largest distributed search of cellular automata.