(anonymous)  •  log in  
Home   •   Rules   •   Objects   •   Census   •   Software   •   Syntheses   •   Statistics

208P41 (xp41_yf3pajk4ozyb32130321010oge2zyj8ckzxc88gy78s2s8zy111y73mq2rmxggy1s48zy4g8ggy4121x121z0o4cy111y0c4oymocgz11yb11yjggybggzya163ym346y0ggy1643zysg8gxg8gy41121zyk247y111xdr8bdoy7ggzyy27872y71226zyv562zyr8e130g0g8o0og8ozyv345pajo)

#C [[ GRID THUMBLAUNCH THUMBSIZE 2 THEME Catagolue ]]
x = 1, y = 1, rule = B3/S23
b!
This pattern is an oscillator.
This pattern is periodic with period 41.
This pattern runs in standard life (b3s23).
The population fluctuates between 208 and 332.
This evolutionary sequence works in multiple rules, from b3s23 through to b38s234c8.

Pattern RLE

Code: Select all

Glider synthesis

Code: Select all
#C [[ GRID MAXGRIDSIZE 14 THEME Catagolue ]]
#CSYNTH xp41_yf3pajk4ozyb32130321010oge2zyj8ckzxc88gy78s2s8zy111y73mq2rmxggy1s48zy4g8ggy4121x121z0o4cy111y0c4oymocgz11yb11yjggybggzya163ym346y0ggy1643zysg8gxg8gy41121zyk247y111xdr8bdoy7ggzyy27872y71226zyv562zyr8e130g0g8o0og8ozyv345pajo costs 100 gliders (true).
#CLL state-numbering golly
x = 1023, y = 134, rule = B3/S23
524bo$522bobo$523b2o3$372bo$371bo613bo$361bo9b3o11bo142bo455bo$
360bo23bo144b2o453b3o$360b3o21b3o141b2o$288bo80bo503bo$278bo10bo
79bobo499bobo3bobo102b2o$262bo13bobo8b3o79b2o501b2o3b2o102bo2bo$
263bo13b2o265bo333bo102bo2bo$261b3o279bo438b2o$284bo74bobo181b3o
427bo$282bobo74b2o613b2o$283b2o75bo178bobo431b2o$367bo172b2o$365b
2o173bo$366b2o320bo$687bo$687b3o$972bo$650b2o103b2o103b2o103b2o3bo
bo13bo$220bo430bo104bo104bo104bo4b2o12bo$219bo124bo306bobo102bobo
102bobo102bobo16b3o$219b3o120b2o308b2o103b2o103b2o103b2o$215bo127b
2o$213bobo77bo688bo$214b2o75bobo689b2o$292b2o688b2o$218b3o75bobo$
218bo78b2o148bo$15bo203bo77bo43bobo101bobo233bo$14bo326b2o103b2o
233bobo282bo$8bo5b3o39bo200b2o83bo79b2o106b2o25b2o79b2o25b2o9bo4b
2o60b2o25b2o76b2o25b2o76b2o9bobo13b2o$6b2o46b2o151b3o48bo164bo107b
o25bo81bo25bo11b2o65bo25bo78bo25bo78bo10b2o13bo$7b2o46b2o41b2o61b
2o46bo6b2o39bo164bo25b2o80bo27b3o77bo27b3o7b2o65bo27b3o74bo27b3o
74bo27b3o$59bo38b2o61b2o45bo7b2o39b2o41bo121b2o25b2o79b2o28bo77b2o
28bo74b2o28bo74b2o28bo74b2o28bo9bo$o47b2o9bobo31b2o61b2o53b2o39b2o
44bobo116b2o29bo76b2o106b2o103b2o103b2o103b2o44bo$b2o45bo2b2o6b2o
32bo2b4o56bo2b4o48bo2b4o34bo2b4o40b2o116bo2b4o101bo2b4o101bo2b4o
98bo2b4o98bo2b4o98bo2b4o37b3o$2o47bobobo40bobo2bo57bobo2bo8bo40bob
o2bo35bobo2bo159bobo2bo102bobo2bo102bobo2bo99bobo2bo99bobo2bo99bob
o2bo$4b3o41b2o2bo3b2o35b2o61b2o2b2o7b2o40b2o2b2o35b2o2b2o159b2o2b
2o102b2o2b2o102b2o2b2o99b2o2b2o99b2o2b2o99b2o2b2o$6bo42bo6bobo35bo
46bo15bo12b2o41bobo38bobo162bobo105bobo105bobo102bobo6bo95bobo102b
obo$5bo41bo8bo35bo49b2o11bo4b2o51bo2bo37bo2bo161bo2bo104bo2bo104bo
2bo101bo2bo5bobo93bo2bo101bo2bo13b2o$47b2o43b2o3bo43b2o12b2o3b2o
52b2o39b2o163b2o106b2o106b2o103b2o6b2o95b2o103b2o15b2o$11bo85b2o
47bo616bo87b2o15bo87b2o9bo5bo$10b2o84bobo3bo44b2o613bobo87bo14bobo
87bo14bobo$10bobo88b2o43b2o599b2o13b2o85b3o15b2o85b3o15b2o$2b2o97b
obo227bo414b2o101bo104bo12bo34bobo$bobo102b2o223bobo414bo53bo163b
2o35b2o$3bo102bobo36b2o184b2o470b2o106bo54bobo34bo12bo$106bo39b2o
174bobo462b2o13b2o88b2o15b3o85b2o15b3o$95b2o48bo177b2o461bobo102bo
bo14bo87bobo14bo$96b2o54bo15b2o153bo463bo104bo15b2o87bo5bo9b2o$95b
o56b2o14bobo316b2o106b2o106b2o95b2o6b2o103b2o86b2o15b2o$151bobo14b
o160bo156bo2bo104bo2bo104bo2bo93bobo5bo2bo101bo2bo86b2o13bo2bo$
328bo158bobo105bobo105bobo95bo6bobo102bobo102bobo$174b2o152b3o155b
2o2b2o102b2o2b2o102b2o2b2o99b2o2b2o99b2o2b2o99b2o2b2o$142b2o19b3o
8bobo156b2o150bo2bobo102bo2bobo102bo2bobo99bo2bobo99bo2bobo99bo2bo
bo$141bobo19bo10bo157b2o151b4o2bo101b4o2bo101b4o2bo98b4o2bo98b4o2b
o58b3o37b4o2bo$143bo20bo169bo125bo29b2o106b2o106b2o103b2o103b2o58b
o44b2o$150b3o305b2o25b2o77bo28b2o77bo28b2o74bo28b2o74bo28b2o64bo9b
o28b2o$152bo173b2o131b2o25bo77b3o27bo68b2o7b3o27bo74b3o27bo74b3o
27bo74b3o27bo$139b3o9bo175b2o156bo81bo25bo68b2o11bo25bo78bo25bo78b
o25bo78bo13b2o10bo$141bo176b3o5bo158b2o79b2o25b2o63b2o4bo9b2o25b2o
76b2o25b2o76b2o25b2o76b2o13bobo9b2o$140bo179bo140b2o194bobo344bo$
319bo141bobo195bo$461bo2$987b2o$986b2o$988bo2$687b2o103b2o103b2o
103b2o$687bobo102bobo102bobo83b3o16bobo$689bo104bo104bo85bo12b2o4b
o$689b2o103b2o103b2o83bo13bobo3b2o$296b2o700bo$295bobo353b3o$297bo
355bo$300b2o350bo$301b2o62b2o217bo$300bo63b2o217b2o$366bo216bobo
410b2o$370b2o623b2o$369b2o208b3o415bo$281b2o88bo209bo405b2o$282b2o
296bo301bo103bo2bo$281bo600b2o3b2o97bo2bo$881bobo3bobo97b2o$887bo$
595b2o$594b2o388b3o$596bo389bo$985bo4$600b2o$600bobo$600bo26$378b
2o$378bobo$378bo$260b3o$262bo$261bo!

Sample occurrences

There are 1 sample soups in the Catagolue:

Unofficial symmetries

SymmetrySoupsSample soup links

oscthread_stdin 1  

Comments (1)

Displaying comments 1 to 1.

On 2023-07-21 at 19:51:39 UTC, ionmars10 wrote:

Good job !

Please log in to post comments.

Catagolue — the largest distributed search of cellular automata.