(anonymous)  •  log in  
Home   •   Rules   •   Objects   •   Census   •   Software   •   Syntheses   •   Statistics

Noah's ark (yl1344_2_1118_c2aaaf958f8f412c06554ab3e40b8749)

??
This pattern is a linear-growth-pattern.
This pattern runs in standard life (b3s23).

Glider synthesis

Code: Select all
#C [[ GRID MAXGRIDSIZE 14 THEME Catagolue ]]
#CSYNTH yl1344_2_1118_c2aaaf958f8f412c06554ab3e40b8749 costs 6 gliders (true).
x = 23, y = 23, rule = B3/S23
9bobo$10b2o$10bo6bo$16bo$16b3o$20b2o$20bobo$20bo2$o$b2o$2o5$3b2o$2bob
o$4bo2$5b3o$5bo$6bo!

Sample occurrences

There are 623 sample soups in the Catagolue:

Official symmetries

SymmetrySoupsSample soup links

C1 1  

D2_x 196                                                                                                                                                                                                                                                                                   

D4_x1 97                                                                                                                                        

D4_x4 98                                                                                                                                         

D8_1 50                                                                      

D8_4 49                                                                    

G1 1  

Inflated symmetries

SymmetrySoupsSample soup links

iD2_x 6         

iD4_x1 7          

iD4_x4 4     

iD8_1 11                

iD8_4 1  

iiD4_x1 3    

iiD4_x4 2   

iiD8_1 2   

iiD8_4 1  

iiiD4_x1 2   

Unofficial symmetries

SymmetrySoupsSample soup links

12G_D2x_stdin 13                  

ee9_D8_1_gutter_test 46                                                                 

ikpx2_stdin 33                                              

Comments (3)

Displaying comments 1 to 3.

On 2019-02-26 at 22:42:51 UTC, mauro.a.araya wrote:

Noah’s ark

On 2018-06-16 at 13:53:25 UTC, ionmars10 wrote:

Produces a block-on-table.

On 2016-05-28 at 14:20:00 UTC, Someone wrote:

As of 5-28-16 at 14:19 GMT, there are 1344 occurrences in D8_1

Please log in to post comments.

Catagolue — the largest distributed search of cellular automata.