(anonymous)  •  log in  
Home   •   Rules   •   Objects   •   Census   •   Software   •   Syntheses   •   Statistics

xs57_0ml1u0mmzgh1g12ehc8a6z5t0t511wdbzw1

#C [[ GRID THUMBLAUNCH THUMBSIZE 2 THEME Catagolue ]]
x = 1, y = 1, rule = B3/S23
b!
This pattern is a still-life.
This pattern is periodic with period 1.
This pattern runs in standard life (b3s23).
The population is constantly 57.
This evolutionary sequence works in multiple rules, from bs2-n3-eijy through to b2in34eqwyz5acin6-i78s012345678.

Pattern RLE

Code: Select all

Glider synthesis

Code: Select all
#C [[ GRID MAXGRIDSIZE 14 THEME Catagolue ]]
#CSYNTH xs57_0ml1u0mmzgh1g12ehc8a6z5t0t511wdbzw1 costs 279 gliders (true).
#CLL state-numbering golly
x = 3097, y = 96, rule = B3/S23
2073bo$2071b2o$2072b2o4$2028bo$2021bo7bo$2022bo4b3o$2020b3o2$1856b
o$1855bo$1855b3o154bo$2013bo$1799bo211b3o$1791bo8bo$1792b2o4b3o
220bo$199bo1591b2o229bo$197b2o1821b3o$198b2o$154bobo1897bo$155b2o
1896bo$155bo1874bo22b3o$1879bo151bo256bo$1877b2o150b3o257bo$1878b
2o189bo217b3o$2023bo30bo14bobo$1583bo437bobo30bobo12b2o$1584bo437b
2o30b2o842bobo$166bo1415b3o460bo852b2o$167b2o213bobo1194bo465bobo
794bo56bo$166b2o215b2o6bo1188bo458bobo3b2o9b3o4bobo777bo41bobo206b
o$379bo3bo6bo612bo574b3o19bobo437b2o14bo6b2o227bo4bo543b3o36bo5b2o
207bo$163b2o215bo9b3o610bobo594b2o438bo16bo6bo225bobo5bo538bo43b2o
3bo206b3o$111bobo48bobo208bo4b3o103bo518b2o596bo204bo239bobo67bo
174b2o3b3o536bobo42b2o149bo$112b2o9bo40bo209bo110b2o509bo810bo238b
2o66bobo280bo438b2o98bo45bo49b2o$112bo8b2o158bo56bo33b3o54bobo52b
2o511b2o569bo236b3o147bobo89bo60bo6b2o281b2o442b2o92bobo44b2o46b2o
5bo52bo$107bo14b2o155bobo54b2o92b2o103bo460b2o323bo247bo386b2o151b
2o176bo57bobo49b2o395bo46b2o34bo58b2o44b2o52bobo50bobo$69bo38bo
137bo33b2o55b2o91bo105bo782bobo245b3o247bo138bo151b2o178b2o5bo45bo
4b2o444bobo48bo34b2o51b2o44b3o57b2o51b2o$50bo18bobo34b3o131bo4b2o
42bo244b3o749bo33b2o150bo345b2o143bo323b2o7b2o44bo3bo446b2o3bobo
76b2o53b2o45bo114b3o$6bo44b2o16b2o31b2o137b2o2bobo40bo281bo715bobo
181bobo344b2o145b2o153b2o174b2o43b3o51bobo5bo395b2o90b2o39bo8bo37b
o5b2o8bo45b2o3bo37b2ob2o6bo$5bo44b2o51b2o130b2o3b2o41b2o3b3o38b2o
56b2o58b2o51b2o51b2o13b2o41b2o41b2o56b2o44b2o46b2o49b2o48b2o44b2o
36bo13b2o36b2o45b2o48b2o52b2o58b2o30b2o53b2o42b2o44b2o38b2o11b2o
47b2o65b2o37bo11b2o49b2o43b2o91b2o79b2o40b2o12b2o68b2o61b2o6bobo
230b2o42b2o4bobo48bo49bo53bo43bo48bo44bo51bo41bo10bo34bo3b2o35bo
11bo2bo48bobo43b2o6bobo45bo2bobo36b2obobo6bo$5b3o94bo67bo63bo2bo
44bo2bo7bo32bo2bo54bo2bo55b2o2bo48b2o2bo48b2o2bo15b2o36b2o2bo38b2o
2bo53b2o2bo41b2o2bo43b2o2bo46b2o2bo45b2o2bo41b2o2bo38bo8b2o2bo37bo
46bo49bo53bo59bo86bo43bo45bo52bo48bo66bo36bobo11bo50bo44bo92bo80bo
55bo69bo57bo5b2o5bo65b2ob2o45b2ob2o62b2ob2o45bobob2o38bo6bobob2o
43bobob2o44bobob2o48bobob2o38bobob2o43bobob2o39bobob2o46bobob2o36b
obob2o40bobobobo36bo9bobobo48bobo42bo5bo2bobo44bo3bobo39bobo$obo
110b2o54bobo61bobobo43bobobo6b2o31bobobo53bobobo55bobobo48bobobo
48bobobo53bobobo38bobobo53bobobo34bobo4bobobo43bobobo46bobobo45bob
obo41bobobo36b3o8bobobo34b2obo43b2obo46b2obo50b2obo56b2obo83b2obo
40b2obo42b2obo49b2obo45b2obo48bo14b2obo37b2o8b2obo47b2obo41b2obo
89b2obo77b2obo52b2obo66b2obo57b2o3bo5b2obo65bobobo45bobobo56bo5bob
obo36b3o7bobobo46bobobo42bobobobo43bobobobo35bo11bobobobo37bobobob
o42bobobobo38bobobobo45bobobobo35bobobobo39bobobo36b3o9bobob2o39b
2o3b2obob2o46bobobob2o38bo4bobobob2o35b2obob2o$b2o45b2o62bo2bo53bo
2bo60bo2bo44bo2bo7bobo30bo2bo46bo7bo2bo59bo52bo52bo57bo42bo11bo36b
obo6bo36b2o7bo47bo50bo49bo45bo42bo8bo34bo2bo43bo2bo46bo2bo50bo2bo
56bo2bo83bo2bo40bo2bo42bo2bo49bo2bo45bo2bo47bobo13bo2bo47bo2bo47bo
2bo41bo2bo89bo2bo77bo2bo52bo2bo66bo2bo21b3o33bobo8bo2bo66bo2bo46bo
2bo57b2o4bo2bo39bo7bo2bo34b3o10bo2bo42b2obo2bo43b2obo2bo37b2o8b2ob
o2bo37b2obo2bo42b2obo2bo38b2obo2bo45b2obo2bo35b2obo2bo39b2obo2bo
46b2obo2bo40b2o2b2obo2bo47b2obo2bo38b2o4b2obo2bo35b2obo2bo$bo45bob
o12b2o38b3o8b2o55b2o62b2o46b2o42b2o11bo36bo7b2o3b2o53b2o3b2o46b2o
3b2o46b2o3b2o51b2o3b2o36b2o3b2o5b2o38b2o4b2o3b2o32bo6b2o3b2o41b2o
3b2o44b2o3b2o43b2o3b2o39b2o3b2o38b2o5b2o3b2o31b2o3b2o40b2o3b2o43b
2o3b2o47b2o3b2o53b2o3b2o80b2o3b2o37b2o3b2o39b2o3b2o34b2o10b2o3b2o
42b2o3b2o44b2o14b2o3b2o44b2o3b2o44b2o3b2o38b2o3b2o86b2o3b2o74b2o3b
2o49b2o3b2o63b2o3b2o17bo47b2o3b2o63b2o3b2o43b2o3b2o52bobo5b2o3b2o
34bo9b2o3b2o32bo4b2o5b2o3b2o42b2o3b2o43b2o3b2o32b2o13b2o3b2o37b2o
3b2o42b2o3b2o38b2o3b2o45b2o3b2o35b2o3b2o39b2o3b2o46b2o3b2o35bo8b2o
3b2o47b2o3b2o33bobo8b2o3b2o35b2o3b2o$47bo14bobo37bo11bobo54bobo61b
obo45bobob2o38bobob2o5b2o34b3o8bobo2bo54bobo2bo31b3o13bobo2bo45bob
obo2bo50bobobo2bo35bobobo2bo6b2o37bo4bobobo2bo38bobobo2bo39bo2bobo
2bo42bo2bobo2bo41bo2bobo2bo37bo2bobo2bo30b3o4bobo6bobo2bo32bobo2bo
41bobo2bo44bobo2bo48bobo2bo54bobo2bo81bobo2bo38bobo2bo40bobo2bo35b
2o10bobo2bo43bobo2bo48bobo10bobo2bo32b2o11bobo2bo45bobo2bo39bobo2b
o87bobo2bo75bobo2bo38b2o10bobo2bo64bobo2bo18bo47bobo2bo64bobo2bo
44bobo2bo45b2o14bobo2bo45bobo2bo31bo4bobo6bobo2bo31bo11bobo2bo34bo
9bobo2bo48bobo2bo38bobo2bo43bobo2bo39bobo2bo46bobo2bo36bobo2bo40bo
bo2bo47bobo2bo45bobo2bo48bobo2bo45bobo2bo36bobo2bo$46b2o14bo40bo9b
o2b3o51bo2b3o58bo2b3o42bo2b2obo37bo2b2obo5bobo43bo2b2o55bo2b2o35bo
11bobob2o46bo2bob2o53bo2b2o38bo2b2o53bo2b2o40b2o2b2o41b2o3b2o44b2o
3b2o43b2o3b3o38b2o3b3o33bo12bo2b3o32bo2b3o41bo2b3o45bob3o49bob3o7b
o47bob3o82bob3o39bob3o41bob3o35bo12bob3o44bob3o49b2o11bob3o34b2o3b
2o5bob3o46bob3o40bob3o88bob3o76bob3o40b2o9bob3o49bo15bob3o12b2o53b
ob3o65bob3o31bobo11bob3o47b2o13bob3o46bob3o39bo6bob3o33bo10bob3o
33bobo9bob3o49bob3o39bob3o44bob3o40bob3o47bob3o37bob3o41bob3o34b2o
12bob3o46bob3o49bob3o46bob3o37bob3o$113b2o4bo50b2o4bo57b2o4bo41b2o
42b2o56b2o58b2o37bo12b2o51b2o60bo42bo57bo45bo47bo49bo49bo45bo35bo
13bobo35bobo44bobo49bo53bo10bobo46bo86bo43bo45bo52bo44bo3bo53bo8bo
3bo36bo5bobobo3bo38bo4b2obo3bo37b2obo3bo85b2obo3bo74bobo3bo42bo6bo
bo3bo52b2o11bo3bo14b2o7bo43bo3bo65bo3bo35b2o8bo3bo49bo12bo3bo46bo
3bo46bo3bo34b3o7bo3bo37b2o3b2obo3bo46b2obo3bo36b2obo3bo41b2obo3bo
37b2obo3bo44b2obo3bo34b2obo3bo38b2obo3bo38b2o5b2obo3bo43b2obo3bo
46b2obo3bo43b2obo3bo34b2obo3bo$118b2o55b2o62b2o136b2o233bo42bo49b
3o6bo31b2o4bo7bo47bo48bobo46b2o43bobo49bobo35bobo44bobo49bo53b3o7b
2o48b3o85b2o37b3o2b2o39b3o2b2o38b2o6b3o2b2o41b4o2b2o59b4o2b2o42b5o
2b2o36bo3bob5o2b2o34bob5o2b2o82bob5o2b2o70bob5o2b2o45bob5o2b2o48bo
bo9b6o2b2o13bo5b2o41b6o2b2o47bo12b6o2b2o32bo7b6o2b2o57b6o2b2o41b6o
2b2o41b6o2b2o39b6o2b2o38bobob4o2b2o31b3o9b2ob4o2b2o33b2ob4o2b2o38b
2ob4o2b2o34b2ob4o2b2o41b2ob4o2b2o31b2ob4o2b2o35b2ob4o2b2o34bo7b2ob
4o2b2o40b2ob4o2b2o43b2ob4o2b2o40b2ob4o2b2o31b2ob4o2b2o$376bobo59bo
bo44b2o126bo40b2o5bo43bo7b2o32b2o2b2o6b2o32bo13b2o49b2o92bo51bo37b
o41b2o3b2o48b2o55bo50bo9bo85bo37bo5bo39bo5bo37bobo6bo5bo48bo45b2o
19bo50bo34b3o13bo44bo92bo70bo9bo45bo9bo59bo9bo19bobo39bo9bo48bo10b
o9bo39bo9bo56bo9bo40bo9bo40bo9bo38bo9bo37bo11bo33bo19bo43bo48bo44b
o51bo41bo45bo52bo50bo53bo50bo41bo$329bo48bo60b2o45b2o124b2o47bobo
42bo39bo4bobo40bo151bo98bo37bobo38bo30bo32bo56bobo8bobo84bobo41bob
o42bo40bo11bo42b2o4bo45bobo12b2o4bo45bo4bo45bo4bo36b4o4bo84b4o4bo
72b4o4bo47b4o4bo61b4o4bo63b4o4bo47b3o11b4o4bo41b4o4bo32b3o21bob4o
4bo40bob4o4bo40bob4o4bo38bob4o4bo34bo4b6o4bo33bo10b5o4bo34b5o4bo
39b2ob2o4bo35b2ob2o4bo36bo5b2ob2o4bo32b2ob2o4bo36b2ob2o4bo43b2ob2o
4bo41b2ob2o4bo44b2ob2o4bo41b2ob2o4bo32b2ob2o4bo$48b2o279b2o8b2o98b
o45bo175b2o93b2o34b3o66bo83b2o98b2o3bo34bo39b2o26b2o31bobo57b2o9b
2o85b2o42b2o41bo53b2o41b2o4b2o46bo11bo2bo3b2o34b2o7bobo3b2o43bobo
3b2o34bo3bo4b2o83bo2bo4b2o74bo4b2o49bo4b2o63bo4b2o65bo4b2o63bo4b2o
38bobo2bo4b2o33bo20bo2bo2bo4b2o38bo2bo2bo4b2o38bo2bo2bo4b2o36bo2bo
2bo4b2o31bobo6bo2bo4b2o44bo2bo4b2o31bo2bo2bo4b2o36bo2bob2o4b2o33bo
bob2o4b2o36b2o2bobobobo3b2o32bobo5b2o36bobo5b2o43bobo5b2o41bobo5b
2o44bobo5b2o41bobo5b2o32bobo5b2o$39b2o6bobo278bobo3b2o3bobo413b2o
41bo62b2o82bobo96bobo3bobo71b2o28b2o31b2o242b2o161bobo41b2o7bo37b
3o10bo40b2o80bo94bo55bo69bo71bo69bo45b2o42bo21b2o49b2o49b2o47b2o
43b2o50b2o6bo42b2o42bobo2b2o45bo45b2o4bo3bo38bobo43bobo50bobo48bob
o51bobo48bobo39bobo$38bobo8bo284bobo2bo151b3o113bo9b3o137bo38bobo
61bobo187b2o97b3o39b3o147bo253bo41bo49bo3b3o121bo3bobo93bo56b2o68b
2o70b2o55bo12b2o37b3o59b2o209b2o47b2o5b2o86b2o145bo45bo52bo50bo53b
o50bo41bo$40bo15b3o188bo86bo49b2o53b2o50bo64bo50b2o4bo3bo44b2o133b
2o66b3o32bobo38b3o205bo41bo52b2o87bo6b2o182bo161bo6bo121b2o3b2o93b
2o254b2o52bo58bobo208bobo46bo95bo$56bo189b2o136bobo53b2o45b2o3bo6b
o54b2o50bobo4b2o3bo42b2o202bo35b2o2bobo35bo206bo41bo52b2o87bo5bobo
34b2o46b3o9bo44bo42bo166bo121bobo145b3o102bo102bobo51bo61bo162b2o
46bo198bo42b2o$52b2o3bo188bobo135bo54bo46bobo9b2o55b2o55bobo48bo
202bo34bo3b2o35bo199bo44b2o55bo87b3o41bobo7b3o38bo3bo4b2o34bo8b2o
40b3o319bo5bo112bo51b2o48b2o376bo4bobo145b2o4b2o41b3o47b2o3b2o37b
2o3b3o$51bobo434bo9bobo72b2o222b2o107bo221b2o11b2o43bobo189bo7bo
39bo3b2o4bobo33b2o7bobo35b2o324bobob2o69b2o41bo3b2o46bobo48bobo
157b3o215b2o3bo146bobo3b2o42bo48bobo2b2o37bo7bo$53bo483b3o33bobo
222b2o329b2o10bobo44bo149b3o46bo4b2o36bobo38bobo3b2o39bobo54bo161b
o92b2o13b2o3b2o58b3o6b2o46bobo47bo208bo216bobo152bo5bo42bo40b2o12b
o43bo$539bo10b3o4b3o13bo223bo22bo307bo23bo53bo32b2o99bo51bobo82bob
o40bo54b2o160b2o2b3o85bobo80bo8bo45bo259bo315b3o143b2o$201bo336bo
13bo4bo261b2o330b2o52b2o31bobo98bo43b3o6bo84bo54b2o40bobo159bobo2b
o89bo79bo4b2o627bo9b3o42b2o86bo15b3o$200b2o349bo6bo11b2o229b3o15bo
bo329bobo51bobo32bo144bo145b2o209bo93bo78bobo261b3o362bo10bo44bobo
101bo$200bobo232b3o12bo119bobo97bo132bo580bo148bo48b2o251b2o80bo
261bo376bo43bo104bo$437bo11b2o119bo98b2o131bo476b2o300bobo246b2o3b
obo342bo$436bo12bobo217bobo145bo460b2o303bo219b2o26b2o358b2o$423b
2o116b2o273b2o80b3o350b2o27bo322b2o199b2o24bo14b2o3b2o338b2o$424b
2o116b2o272bobo81bo349bobo350bobo197bo41bobob2o341bo$423bo117bo
357bo352bo22bo327bo151bo89bo5bo318b3o$1274b2o478b2o80b3o314b2o17bo
$1274bobo477bobo79bo317b2o15bo$1826b2o9bo315bo$1806bo20b2o$564b2o
1240b2o18bo11bo$564bobo1238bobo29b2o$564bo1272bobo3$1248b2o$1247bo
bo$1249bo8$1794b3o74b2o$1796bo74bobo$1795bo7b2o66bo$1802bobo$1787b
3o14bo$1789bo$1788bo!

Sample occurrences

There are 15 sample soups in the Catagolue:

Unofficial symmetries

SymmetrySoupsSample soup links

catforce_stdin 12                 

mvr_catforce_stdin 3    

Comments (0)

There are no comments to display.

Please log in to post comments.

Catagolue — the largest distributed search of cellular automata.