(anonymous)  •  log in  
Home   •   Rules   •   Objects   •   Census   •   Software   •   Syntheses   •   Statistics

Pipsquirter 1 (xp6_oe1dicggz6t1mhmgn8a6zw122qq1)

#C [[ GRID GRIDMAJOR 0 THUMBLAUNCH THUMBSIZE 2 THEME Catagolue ]]
x = 1, y = 1, rule = B3/S23
b!

There is currently no description assigned to this pattern.

This pattern is a oscillator.
This pattern is periodic with period 6.
This pattern runs in standard life (b3s23).
The population fluctuates between 50 and 53.
This evolutionary sequence works in multiple rules, from b3-js23 through to b34ceq5aci6en78s234acjkqrw5-e678.

Pattern RLE

Code: Select all

Glider synthesis

Code: Select all
#C [[ GRID MAXGRIDSIZE 14 THEME Catagolue ]]
#CSYNTH xp6_oe1dicggz6t1mhmgn8a6zw122qq1 costs 140 gliders (true).
#CLL state-numbering golly
x = 1681, y = 141, rule = B3/S23
1350bo$1350bobo$1350b2o12$800bo$798bobo$799b2o3$165bo$165bobo$165b
2o442bo328bobo$610bo328b2o$608b3o328bo$1057bo$803bo251b2o$152bo
458bo189bobo252b2o$152bobo151bo304bobo188b2o4bo42bo103bo92bo$152b
2o150b2o90bo204bo9b2o193b2o42bo102bobo91bo$305b2o87bobo160bo44b2o
203b2o41b3o47bobo51b2o91b3o617bo$302bo92b2o159bo44b2o11bo285b2o
765bobo$144bo12bobo140b2o7bo96bo149b3o55bobo284bo141bobo621b2o9bo$
142bobo7bobo2b2o129bobo10b2o4b2o96bo156bo51b2o341b3o84b2o626bo3b2o
$143b2o8b2o3bo130b2o17b2o87bo7b3o154bobo39bo352bo86bo12bo153bo458b
2o5b2o$94bo58bo52bo82bo108bo163b2o41b2o238bo112bo98bobo152b2o457b
2o$92bobo112bo188b3o157b2o46b2o237bobo57bo94bo50bo7b2o37bo114b2o
11bobo$93b2o110b3o301bo47b2o36bobo113bo132b2o57bobo91bobo48bobo46b
o101bo24b2o171bo$144bo18bo46bo299b2o44bo39b2o112bo192b2o92b2o49b2o
45b3o102bo24bo169b2o$99bo45bo15b2o47bobo194bobo99b2o85bo18bo35bo
58b3o180b2o303b3o195b2o$100bo42b3o16b2o46b2o143b2o3b2o45b2o4bo104b
o95bobo35bo11b2o53b2o41b2o42b2o33b3o7b2o39bobo50b2o46b2o8b2o39b2o
60b2o$98b3o101bo151bo2bo2b2o46bo4bobo37b2o51b2o10bobo37b2o53bo2bo
33b3o9bo2bo51bo2bo39bo2bo40bo2bo35bo7bo2bo37bo4bo7b3o37bo2bo44bo2b
o5bo2bo38bo2bo58bo2b2o41b2o7bo41bo7b2o85b2o89b2o45b2o54b2o46b2o58b
2o51b2o$52bo147bobo3bo148b2o56b2o38b2o51b2o5bobo2b2o38b2o54b2o46b
3o52b3o40b3o41b3o35bo9b3o38b5o7bo40b3o45b3o6b2o3b2o35b3o5b2o6bo45b
3o42bo8bobo39b2o6bo86bobo88bobo44bobo2b2o49bobo2b2o41bobo2b2o9bobo
41bobo2b2o46bobo2b2o$53bo40b3o104b2o3b3o143bo46bo64bo48b2o88bo302b
o101bobo42b2o4b2o34bo15bo42bo6b2o33b3o3bobo8bo86bo90bo5b3o38bo3bo
51bo3bo43bo3bo9b2o44bo3bo48bo3bo$2bo9bobo36b3o6bo35bo54b2o56bo39bo
6bo38bo4b2o48b3o6b2o36b3o7b2o42b4o8bobo38b4o6bo41b4o41b2o9b4o44b5o
42b2o6b5o38b5o39b5o43b5o38b5o48b5o43b5o9bo36b5o10b2o31bobo11b4obo
37b4obo42bo10b4obo81b4ob2o84b4ob2o3bo36b4ob3o48b4ob3o40b4ob3o4bobo
4bo40b4ob3o45b4ob3o$obo9b2o45b2o34bo55bobo52b3o38b3o4b2o37b3o3bo2b
o46bo8b2o36bo9b2o42bo4bo7bobo37bo4bo46bo4bo34bobo4b2o7bo4bo34b2o7b
o4bo40bo2bo5bo4bo37bo4bo38bo4bo42bo4bo37bo4bo47bo4bo42bo4bo45bo4bo
43b2o11bo4bo37bo4bo41bo11bo4bo81bo4bo85bo4bo5bo35bo4bo50bo4bo42bo
4bo6b2o46bo4bo5b2o40bo4bo5b2o$b2o4bo5bo45bobo39b2o50bo51bo40bo8b2o
35bo6bo2bo10bo34bo2b2o7bo34bo2b2o8bo40bo2b2obo8bo37bo2b2obo45bo2b
2obo35b2o12bo2b2obo35b2o4b2o2b2obo40bo2bo3b2o2b2obo35b2o2b2obo36b
2o2b2obo40b2o2b2obo35b2o2b2obo45b2o2b2obo40b2o2b2obo43b2o2b2obo54b
2o2b2obob2o32b2o2b2obob2o4b3o41b2o2b2obobo77b2o2b2obobo81b2o2b2obo
39b2o2b2obo48b2o2b2obo40b2o2b2obo7bo44b2o2b2obo4bo2bo37b2o2b2obo4b
o2bo$7bobo39b2o51b2o4b2obo41bob2obo39b2o4bob2obo35bob2obo40bob2obo
3b2o10b2o33bob2o2bo40bob2o2bo47bob2o2bo46bob2o2bo45bob2o2bob2o33bo
12bob2o2bob2o32bo5bo2b2o2bob2o39b2o3bo2b2o2bob2o32bo2b2o2bob2o33bo
2b2o2bob2o37bo2b2o2bob2o32bo2b2o2bob2o42bo2b2o2bob2o37bo2b2o2bob2o
40bo2b2o2bob2o51bo2b2o2bobobo31bo2b2o2bobobo4bo42bo2b2o2bobobo75bo
2b2o2bobobo79bo2b2o2bob2o36bo2b2o2bob2o45bo2b2o2bob2o37bo2b2o2bob
2o49bo2b2o2bob2o3b2o37bo2b2o2bob2o3b2o$7b2o39bo2bo49bo5bo2b2o42bo
2b2o40b2o4bo2b2o36bo2b2o41bo2b2o15bobo33bo2b2o42bo2b2o49bo2b2o12b
3o33bo2b2o10b2o35bo2b2o2bobo46bo2b2o2bobo38b2o2b2o2bobo44b2o2b2o2b
obo30bob2o2b2o2bobo31bob2o2b2o2bobo35bob2o2b2o2bobo30bob2o2b2o2bob
o40bob2o2b2o2bobo35bob2o2b2o2bobo38bob2o2b2o2bobo40b2o7bob2o2b2o2b
o32bob2o2b2o2bo7bo40bob2o2b2o2bobo74bob2o2b2o2bobo78bob2o2b2o2bo
36bob2o2b2o2bo45bob2o2b2o2bo37bob2o2b2o2bo49bob2o2b2o2bo42bob2o2b
2o2bo$49bobo44b2o10bo46bo42bo7bo40bo45bo55bo46bo53bo15bo36bo13bobo
35bo5bobo47bo5bobo40bo5bobo46bo5bobo30bo3bo5bobo31bo3bo5bobo35bo3b
o5bobo30bo3bo5bobo40bo3bo5bobo35bo3bo5bobo38bo3bo5bobo41b2o6bo3bo
5b2o31bo3bo5b2o47bo3bo5b2o75bo3bo5b2o79bo3bo5bo36bo3bo5bo45bo3bo5b
o37bo3bo5bo7b3o39bo3bo5bo42bo3bo5bo$46b3obo46b2o6b3ob3o40b3ob3o44b
3ob3o34b3ob3o4b3o32b3ob3o49b3ob3o40b3ob3o47b3ob3o13bo32b3ob3o6bo3b
o34b3ob3o3bo45b3ob3o3bo37b4ob3o3bo43b4ob3o3bo32b3ob3o3bo33b3ob3o3b
o37b3ob3o3bo32b3ob3o3bo42b3ob3o3bo37b3ob3o3bo40b3ob3o3bo41bo9b3ob
3o36b3ob3o52b3ob3o80b3ob3o84b3ob5o38b3ob5o47b3ob5o39b3ob5o8bo42b3o
b5o39bo4b3ob5o$45bo2bo47bo7bo2bo3bo39bo2bo3bo43bo2bo3bo33bo2bo3bo
4bo33bo2bo3bo48bo2bo3bo39bo2bo3bo46bo2bo3bo45bo2bo3bo5b2o37bo2bo3b
o48bo2bobo2bo39bo3bobo2bo46bo2bobo2bo37bobo2bo38bobo2bo42bobo2bo
37bobo2bo47bobo2bo42bobo2bo45bobo2bo56bobo2bo37bobo2bo53bobo2bo81b
obo2bo85bobo44bobo53bobo45bobo13bo43bobo44b2o4bobo21b3o$8b2o35bo2b
o55bo2bo43bo2bo47bo2bo37bo2bo9bo32bo2bo52bo2bo43bo2bo50bo2bo49bo2b
o9bobo36bo2bo52b2o5b2o39b2o6b2o39b3o11b2o41b2o41b2o46b2o41b2o51b2o
46b2o49b2o60b2o41b2o57b2o85b2o91b2o45b2o8bo45b4o44b4o56b4o37b2o10b
4o15bo$3bo3b2o37b2o4bo52b2o45b2o49b2o39b2o44b2o54b2o45b2o52b2o51b
2o50b2o152bo684b2o45bobo6bo33bo12bo2bo44bo2bo56bo2bo48bo4bo15bo$3b
2o4bo42b2o462b2o187bo355bo377bo7b3o32bo12b2o36bo9b2o48bo9b2o41bo7b
2o2b2o$2bobo46bobo3bo245bo207b2o3bobo36b2o154bo53b3o292b2o418b3o
50bo59bo52bo$56b2o240bo3b2o5b3o198bobo3bo37bobo6bo146b2o53bo294bob
o327bo4b2o48bo87bo59bo52bo$56bobo239b2o2bobo4bo202bo43bo4b2o143bo
3bobo48b2o3bo623b2o2b2o48b2o159b2o62b3o$297bobo10bo251b2o89bo52b2o
52bobo626bobo4bo47bobo36b2o44b3o3b3o51b3o3b3o6b2o36b3o3b3o18bo$50b
2o506bo47b2o45b2o2b3o45bobo54bo721b2o120bo63bo7b2o$51b2o504b2o48b
2o43bobo2bo825bo49bo59bo7bo44bo31bobo$50bo506bobo46bo9b2o40bo53bo
678b3o139bo59bo7b2o43bo31bo$615b2o94b2o678bo141bo59bo6bobo43bo$
602b2o13bo93bobo678bo$603b2o1046b2o$602bo1049b2o$1651bo3$671b3o
991b2o$671bo993bobo$672bo992bo20$1349b3o$1349bo$1350bo2$1346bo4bo$
1345b2o3b2o$1345bobo2bobo2$1257b2o$1258b2o$1257bo33$1308bo$1306b2o
$1302bo4b2o$1300bobo$1301b2o$1307b2o$1307bobo$1307bo!

Sample occurrences

There are no sample soups stored in the Catagolue.

Comments (2)

Displaying comments 1 to 2.

On 2020-02-09 at 04:59:09 UTC, Someone wrote:

dang,too much gliders!!!!!!!!!!!!!!!!!!!!! how do you even keep track of the gliders!!!!!!!!!!!!!!!!!!!! I agree with mauro.a.araya

On 2019-05-19 at 14:13:42 UTC, mauro.a.araya wrote:

It’s impressive that we’re capable of synthesizing something like this

Please log in to post comments.

Catagolue — the largest distributed search of cellular automata.