(anonymous)  •  log in  
Home   •   Rules   •   Objects   •   Census   •   Software   •   Syntheses   •   Statistics

xp45_y49v0s2q4og8ozy269aqisusiqaa4zzy8rhha4zz9f9xokmiczbrbxcnn4oz232y111

#C [[ GRID THUMBLAUNCH THUMBSIZE 2 THEME Catagolue ]]
x = 1, y = 1, rule = B3/S23
b!
This pattern is an oscillator.
This pattern is periodic with period 45.
This pattern runs in standard life (b3s23).
The population fluctuates between 91 and 136.
This evolutionary sequence works in multiple rules, from b3s23 through to b3s234c6e.

Pattern RLE

Code: Select all

Glider synthesis

Code: Select all
#C [[ GRID MAXGRIDSIZE 14 THEME Catagolue ]]
#CSYNTH xp45_y49v0s2q4og8ozy269aqisusiqaa4zzy8rhha4zz9f9xokmiczbrbxcnn4oz232y111 costs 98 gliders (true).
#CLL state-numbering golly
x = 1187, y = 69, rule = B3/S23
675bo$673bobo$674b2o119bo$bobo789bobo$2b2o790b2o$2bo$687bobo122bo$
688b2o120b2o$155bo527bo4bo101bo20b2o$154bo526bobo107bo$154b3o525b
2o10bo94b3o9bo7bo$17bo674b2o106bo6b2o$15b2o676b2o62bo42b3o5b2o$7bo
bo6b2o680bo52bo4bo$8b2o231bo187bobo266bobo48b2o5b3o$8bo140bo49bo
42b2o186b2o266b2o50b2o58b2o$147bobo49bobo39b2o187bo114bo263b2o$23b
obo122b2o49b2o236bobo103b2o258bo7bo$19bo3b2o412b2o105b2o154b3o40b
2o7b3o47bobo50b2o51b2o49b2o45b2o52b2o54b2o59b2o$13bo3b2o5bo171b2o
240bo261bo41bobo7bo48bobo47b2o2bo48b2o2bo46b2o2bo42b2o2bo49b2o2bo
51b2o2bo56b2o2bo$12b2o4b2o39b2o2bo41b2o2bo35b3o7b2o2bo35bobo3bo40b
o5b2o4bo41bo41bo41bo47bo51bo11bo39bo55bo43bo55bo12bo37bo2bo10bo44b
o2bo48bo2bobo47bo2bobo45bo2bobo41bo2bobo48bo2bobo50bo2bobo55bo2bob
o$12bobo11bobo30bo2bobob2o37bo2bobob2o33bo7bo2bobob2o31bo4bobob2o
37b2o3bo2bobobob2o31b2obobobob2o31b2obobobob2o31b2obobobob2o37b2ob
obobob2o41b2obobobob2o5b2o34b2obobobob2o12bo32b2obobobob2o33b2obob
obob2o45b2obobobob2o40b2obobobob2o48b2obobobob2o43b2obobobob2o42b
2obobobob2o40b2obobobob2o36b2obobobob2o43b2obo2bo2b2o45b2obobobob
2o50b2obobobob2o$4b3o19b2o32b3obobobo37b3obobobo31bo9b3obobobo31b
5obobobo31b2o2b2o5b3obobobobo30bob2obobobobo30bob2obobobobo30bob2o
bobobobo36bob2obobobobo40bob2obobobobo5b2o33bob2obobobobo11bobo30b
ob2obobobo34bob2obobobo46bob2obobobo41bob2obobobo49bob2obobobo44bo
b2obobobo43bob2obobobo41bob2obobobo37bob2obobobo44bob2obobobo46bob
2o5bo51bob2o5bo$6bo20bo35bo4bo40bo4bo44bo4bo36bo4bo30bobo14bo4bo
36bo4bo36bo4bo36bo4bo42bo4bo3bo42bo4bo46bo4bo11b2o37bo4bo38bo4bo
50bo4bo45bo4bo53bo4bo48bo4bo47bo4bo45bo4bo40b3o3bo47b3o3bo49b3o3bo
54b3o3bo$5bo4b3o9b2o36b2obob3o33bo4b2obob3o40b4obob3o32b4obob3o33b
o9b4obob3o32b4obob3o32b4obob3o32b4obob3o38b4obob3o4bobo35b4obob3o
42b4obob3o7b3o36b4obob3obo32b4obob3obo44b4obob3obo39b4obob3obo47b
4obob3obo42b4obob3obo41b4obob3obo39b4obob3obo35b4obob3obo42b4obob
3obo44b4obob3obo49b4obob3obo$12bo9bobo34bobobobo36bo2bobobobo42bo
2bobobo34bo2bobobo45bo2bobobo34bo2bobobo34bo2bobobo34bo2bobobo40bo
2bobobo6b2o36bo2bobobo2b3o39bo2bobobo9bo38bo2bobobo3bo32bo2bobobo
3bo44bo2bobobo3bo39bo2bobobo3bo47bo2bobobo3bo42bo2bobobo3bo33bo7bo
2bobobo3bo38bo3bobobo3bo34bo11bo41bo3bo3bo3bo43bo11bo48bo11bo$11bo
10bo37bo3bo35b3o3bo2bo49bo41bo52bo41bo41bo41bo47bo12b2o37bo4bo2bo
43bo2b2o8bo42bo2b3o38bo2b3o50bo2b3o45bo2b3o53bo2b3o48bo2b3o32bobo
12bo2b3o40b3o2bo2b3o36b3obobob3o43b3o5b3o45b3o5b3o50b3o5b3o$109b2o
48b2o40b2o51b2o40b2o40b2o39bobo3bo41bobo11bobo35bobo4b2o5bobo35bob
obo51bobobo39bobobo51bobobo46bobobo12b3o39bobobo49bobobo35b2o8bo2b
obobo44bobobobo4bobo33b2obob2o47bob3obo49bo5bo54bo5bo$240b3o137bo
3bo43bo12bo38bo12b2o37bo2bo52bo2bo38bobo2bo52bobo48bobo13bo42bobo
51bobo46bo3bobo40bo5bobobo5b2o89b5o51b5o56b5o$bo63b2o175bo141b3o
44b2o50b2o9bo40b2o54b2o38bo3b2o52bo50bo15bo42bo53bo40b2o5bo4bo42bo
6bo8bo90b3o47bo$b2o62bobo31b3o139bo94b2o92bo51bo6b3o53b3o347b2o50b
3o6b2o146bobo$obo7b2o53bo33bo235bo2bo50bobo41bo51bo3bo55bo38b3o
302b2o3bo210b2o$9b2o89bo191b3o41b2o51b2o40b2o7bo42b2o5bo55bo39bo
256b3o44b2o53bo$11bo50b2o230bo45b3o47bo48b2o144bo3b2o254bo43bo53bo
bo6bo65bo$63b2o228bo46bo44b3o51bobo147bobo252bo3b2o94b2o6b2o64bobo
159bo$62bo233b3o42bo43bo203bo50b3o205bobo47bo3b3o46bobo7b2o55b2o
154bo3b2o$296bo89bo238b3o12bo207bo49b2o4bo42b2o11b2o212b2o3b2o$
297bo329bo13bo255bobo3bo42bobo13bo47bo58bo55bo47bobo$490b2o134bo4b
o279bo36bo61b2o56bobo53bobo$490bobo138b2o2b3o272b2o43b3o6b2o43bobo
55bo2bo52bo2bo$490bo139bobo2bo274bobo44bo6bobo101b2o54b2o$636bo
319bo7bo96bo55bo$1011b3o48bo53bobo66bo$1011bo48b3o121b3o$1012bo58b
2o54b2o4bo43b3o$1071bobo42b3o8bobo2bo43bob2o$1063b2o7bo43b3o9bo3b
3o41bo3bo3b3o$1063bobo51bo59bo2bo$1058bo4bo120bobo$1059b2o74b3o46b
obo$1058b2o57bo11bobo3bo41bo2bo$1116b3o10b2o5bo39bo3bo3b3o$1116b3o
11bo45bob2o$1013bo163b3o$1013b2o169b3o$1012bobo101bobo66bo$1117bo$
1124b2o$1062b3o4b2o52bo2bo$1064bo4bobo52bobo$1063bo5bo55bo3$1072b
2o$1071b2o$1073bo$1105b2o$1104bobo$1106bo!

Sample occurrences

There are 1 sample soups in the Catagolue:

Unofficial symmetries

SymmetrySoupsSample soup links

mvr_catforce_stdin 1  

Comments (0)

There are no comments to display.

Please log in to post comments.

Catagolue — the largest distributed search of cellular automata.