(anonymous)  •  log in  
Home   •   Rules   •   Objects   •   Census   •   Software   •   Syntheses   •   Statistics

p38 D8 honey farm hassler (xp38_y5ggy433yc33y4ggzy0gy1346y2gggy266y2gggy2643y1gzy01156y62543ya3452y66511zggy3gg8gy5354cy2c453y5g8ggy3ggz11y33221wc4oyio4cw1223y311zy2ooy511yg11y5oozybg0s4yg4s0gzccy3eaicw11y4gy2gy411wciaey3cczyi6511y21156zy0c453y62d9eyae9d2y6354czy58e13yb33yb31e8zyf66yc66)

#C [[ GRID THUMBLAUNCH THUMBSIZE 2 THEME Catagolue ]]
x = 1, y = 1, rule = B3/S23
b!
This pattern is an oscillator.
This pattern is periodic with period 38.
This pattern runs in standard life (b3s23).
The population fluctuates between 232 and 472.
This evolutionary sequence works in multiple rules, from b3s23 through to b34c6e8s234c5e8.

Pattern RLE

Code: Select all

Glider synthesis

Code: Select all
#C [[ GRID MAXGRIDSIZE 14 THEME Catagolue ]]
#CSYNTH xp38_y5ggy433yc33y4ggzy0gy1346y2gggy266y2gggy2643y1gzy01156y62543ya3452y66511zggy3gg8gy5354cy2c453y5g8ggy3ggz11y33221wc4oyio4cw1223y311zy2ooy511yg11y5oozybg0s4yg4s0gzccy3eaicw11y4gy2gy411wciaey3cczyi6511y21156zy0c453y62d9eyae9d2y6354czy58e13yb33yb31e8zyf66yc66 costs 92 gliders (true).
#CLL state-numbering golly
x = 702, y = 80, rule = B3/S23
482bobo$482b2o108bo$483bo106b2o$465bo125b2o$258bo207bo$172bo86bo
204b3o$170b2o85b3o$171b2o2$265bo299bo3bobo$263b2o298bobo3b2o$146bo
111bobo3b2o203bobo92b2o4bo92b2o16b2o$144bobo112b2o209b2o2bobo186b
2o16b2o$145b2o112bo210bo3b2o$264bo210bo$264bobo31b2o51b2o36b2o55b
2o36b2o69b2o36b2o58b2o36b2o$2bo261b2o32bo53bo36bo57bo36bo71bo36bo
60bo36bo$obo191bo101bobo14bo38bobo11bobo18bobo57bobo32bobo71bobo
15b2o15bobo60bobo4bobo8b2o8bo6bobo$b2o190bo102b2o10bo4bobo37b2o11b
2o19b2o59b2o10bo21b2o73b2o10bo4b2o15b2o62b2o5b2o3bo4b2o8bobo4b2o$
193b3o4bo105b2o5b2o46b3o3bo91bobo106bobo91bo3bobo13b2o$18bo180b2o
54bo51b2o37bo16bo31bo45bo17b2o29bo59bo17b2o11bo17bo48bo17b2o11bo
17bo$16b2o181bobo53b3o88b3o13bo30b3o30bo14b3o44b3o59b3o27bobo14b3o
48b3o27bobo14b3o$17b2o93bo78bobo64bo90bo42bo34b2o15bo42bo48bobo14b
o26bobo13bo54bo26bobo13bo$98bo12bo80b2o63b2o50bo38b2o42b2o32b2o15b
2o42b2o48b2o13b2o27bo14b2o52b2o27bo14b2o$5bo92bobo10b3o78bo110b3o
2b2o227bo$6bo91b2o203bo4bobo$4b3o76b2o18bo68b2o10b2o87b2o10b2o17bo
59b2o10b2o81b2o10b2o95b2o10b2o84b2o10b2o$83bo19bobo66bo12bo87bo12b
o77bo12bo81bo12bo95bo12bo84bo12bo$84b3o9b2o5b2o68b3o6b3o89b3o6b3o
79b3o6b3o83b3o6b3o97b3o6b3o23bo46bo15b3o6b3o16bo$2bo83bo8b2o78bo6b
o93bo6bo83bo6bo63bo23bo6bo101bo6bo24bo48bo16bo6bo16b2o$3bo93bo293b
o47b2o162b3o38b2o4b3o41b2o4b2o$b3o385bobo46b2o204b2o54b2o$6bobo
381b2o164b2o96b2o$6b2o68b2o87b2o24b2o73b2o24b2o63b2o24b2o67b2o24b
2o5b2o68bo2bo2b2o24b2o5b2o57bo2bo2b2o24b2o5b2o$7bo68bobo86bobo22bo
bo73bobo22bobo63bobo22bobo52b2o13bobo22bobo5bobo68b2o3bobo22bobo5b
obo7b2o48b2o3bobo22bobo5bobo$78bo88bo22bo77bo22bo67bo22bo9b2o44b2o
14bo22bo8bo76bo22bo8bo7b2o56bo22bo8bo$78b2o87b2o20b2o77b2o20b2o67b
2o20b2o8b2o44bo16b2o20b2o85b2o20b2o18bo55b2o20b2o$149b2o242bo$108b
o41b2o348bo$70bobo34b2o40bo280b2o68bobo49b2o42b2o52b2o42b2o$71b2o
34bobo98bo220bobo68b2o50b2o42b2o52b2o42b2o$71bo134b2o223bo$207b2o
139bo$100b2o65b2o20b2o77b2o20b2o57b2o8b2o20b2o71b2o20b2o16bo49bo
18b2o20b2o74b2o20b2o$101bo65bo22bo77bo22bo56b2o9bo22bo62bo8bo22bo
14b2o51b2o7bo8bo22bo65bo8bo22bo$28bo72bobo61bobo22bobo73bobo22bobo
63bobo22bobo59bobo5bobo22bobo13b2o49b2o7bobo5bobo22bobo3b2o57bobo
5bobo22bobo3b2o$28b2o72b2o61b2o24b2o73b2o24b2o63b2o24b2o60b2o5b2o
24b2o74b2o5b2o24b2o2bo2bo57b2o5b2o24b2o2bo2bo$27bobo320b2o240b2o
96b2o$32b3o315bobo139b2o150b2o54b2o$32bo49bo267bo140b2o51b3o97b2o
4b2o41b3o4b2o$33bo49b2o8bo81bo6bo93bo6bo83bo6bo87bo6bo23bo52bo24bo
6bo72b2o16bo6bo16bo$75b2o5b2o9b3o77b3o6b3o89b3o6b3o79b3o6b3o83b3o
6b3o73bo23b3o6b3o69bo16b3o6b3o15bo$74bobo19bo75bo12bo87bo12bo77bo
12bo81bo12bo95bo12bo84bo12bo$29b3o44bo18b2o75b2o10b2o69bo17b2o10b
2o77b2o10b2o81b2o10b2o95b2o10b2o84b2o10b2o$29bo50b2o167bobo4bo$30b
o35b3o10bobo83bo84b2o2b3o355bo$68bo12bo82b2o84bo50b2o45b2o42b2o49b
2o42b2o15b2o46b2o14bo27b2o13b2o37b2o14bo27b2o$17b2o48bo96bobo134bo
47bo42bo51bo42bo15b2o48bo13bobo26bo14bobo37bo13bobo26bo$18b2o136bo
bo143b3o41b3o30bo13b3o45b3o44b3o14bo44b3o14bobo27b3o48b3o14bobo27b
3o$17bo139b2o92b2o51bo41bo31bo16bo45bo29b2o17bo59bo17bo11b2o17bo
48bo17bo11b2o17bo$157bo4b3o80b2o5b2o120bo3b3o89bobo106bobo80b2o13b
obo3bo$33b2o129bo79bobo4bo10b2o89b2o19b2o11b2o59b2o21bo10b2o73b2o
15b2o4bo10b2o62b2o4bobo8b2o4bo3b2o5b2o$33bobo127bo82bo14bobo88bobo
18bobo11bobo57bobo32bobo71bobo15b2o15bobo60bobo6bo8b2o8bobo4bobo$
33bo227bo32b2o56bo36bo57bo36bo71bo36bo60bo36bo$260b2o31bobo55b2o
36b2o55b2o36b2o69b2o36b2o58b2o36b2o$295bo160bo$211b2o87bo155b2o3bo
$211bobo85b2o154bobo2b2o201b2o16b2o$211bo82b2o3bobo158bobo116bo4b
2o77b2o16b2o$295b2o282b2o3bobo$294bo283bobo3bo2$185b2o$186b2o112b
3o$185bo114bo164b3o$301bo163bo$466bo90b2o$448bo109b2o$448b2o107bo$
447bobo!

Sample occurrences

There are 9 sample soups in the Catagolue:

Unofficial symmetries

SymmetrySoupsSample soup links

b3s23osc_stdin 8           

oscthread_stdin 1  

Comments (0)

There are no comments to display.

Please log in to post comments.

Catagolue — the largest distributed search of cellular automata.