(anonymous)  •  log in  
Home   •   Rules   •   Objects   •   Census   •   Software   •   Syntheses   •   Statistics

p34 bumper loop (xp34_y132acy9ok46zy48k2k8w8o08oz02egoy11y211ygoge2zy28g08oyaocgy272zy3101y18goyaok0cgz0g8ox27y31yho8gz23yhok4ogwg848gy132zyf8oy6121ggzyd311ya1226)

#C [[ GRID THUMBLAUNCH THUMBSIZE 2 THEME Catagolue ]]
x = 1, y = 1, rule = B3/S23
b!
This pattern is an oscillator.
This pattern is periodic with period 34.
This pattern runs in standard life (b3s23).
The population fluctuates between 120 and 176.
This evolutionary sequence works in multiple rules, from b3-ys23 through to b34t5c6i7es234cy5k6in78.

Pattern RLE

Code: Select all

Glider synthesis

Code: Select all
#C [[ GRID MAXGRIDSIZE 14 THEME Catagolue ]]
#CSYNTH xp34_y132acy9ok46zy48k2k8w8o08oz02egoy11y211ygoge2zy28g08oyaocgy272zy3101y18goyaok0cgz0g8ox27y31yho8gz23yhok4ogwg848gy132zyf8oy6121ggzyd311ya1226 costs 100 gliders (true).
#CLL state-numbering golly
x = 780, y = 95, rule = B3/S23
730bo$730bobo$710bobo17b2o$711b2o$711bo$714bo$715b2o$714b2o4$240bo
478bo$240bobo476bobo$240b2o477b2o2$608bo108bo$232bo373b2o107bobo$
230bobo3bobo368b2o97bo9b2o$231b2o3b2o469b2o$237bo468b2o$225bobo
373bo$226b2o371bobo$226bo373b2o$724bo$722bobo$307bobo287b3o123b2o$
151bo156b2o289bo117b2o26bo15bo$152b2o154bo5bo9bo46bobo21bo72bo72bo
56bo25bo91bobo16bo8bo15bo$151b2o161bobo5b3o47b2o19b3o70b3o70b3o80b
3o91b2o15b3o8b3o13b3o$314b2o5bo50bo5bo13bo72bo72bo82bo110bo$311bo
9b2o55bobo11b2o71b2o71b2o81b2o19bo89b2o$154bo157bo65b2o6bo72bo72bo
82bo24bobo83bo49bo$149b3obo44bo111b3o62bo9bobo70bobo70bobo80bobo
24b2o3bo78bobo48bobo$151bob3o43bo176bo7bobo65bo4bobo65bo4bobo24bo
50bo4bobo29bo73bo4bobo49b2o$150bo46b3o174b3o7b2o65bobo3b2o65bobo3b
2o23b2o50bobo3b2o30b3o70bobo3b2o47bo$450bobo70bobo30b2o48bobo108bo
bo52bo$203bo246b2o71b2o25bo55b2o109b2o45bo7b3o$45bo158b2o21b2o71b
2o12b2o55b2o12b2o57b2o12b2o57b2o12b2o17bobo47b2o12b2o95b2o12b2o35b
2o$45bobo35bobo117b2o22bobo71bo12bobo55bo12bobo57bo12bobo57bo12bob
o16b2o49bo12bobo95bo12bobo22b2o11b2o$45b2o37b2o142bobo70bobo11bobo
54bobo11bobo56bobo11bobo56bobo11bobo66bobo11bobo13b2o18bo31bo28bob
o11bobo13b2o6bobo$84bo5bo138bo72b2o12bo56b2o12bo58b2o12bo25bo32b2o
12bo19b3o46b2o12bo14bobo16b2o32b2o27b2o12bo14bobo6b2o$90bobo7bo56b
o76bo86bo70bo72bo18b2o52bo14bo67bo10bobo15bobo30b2o58bobo$47b2o41b
2o6bo2bo53bo2bo43b3o27bo2bo83bo2bo67bo2bo69bo2bo18b2o49bo2bo14bo
64bo2bo10bo97b3o10bo22b2o$46b2o39bo10bo2bo53bo2bo45bo27bo2bo83bo2b
o67bo2bo69bo2bo12bo56bo2bo79bo2bo107b3o23bo9b2o$48bo39bo10bo48bo7b
o46bo21bo7bo78bo7bo62bo7bo64bo7bo14bobo47bo7bo74bo7bo102bo30b2o12b
o$86b3o58bobo74bobo33bo50bobo68bobo60bo9bobo21b2o41bo5bobo74bo5bob
o102bo5bobo30b2o$146bobo74bobo32b2o50bobo68bobo62bo7bobo64bobo3bob
o20b2o52bobo3bobo20b2o80bobo3bobo20b2o$146b2o17b2o39b2o15b2o17b2o
15b2o49b2o17b2o50b2o17b2o42b3o7b2o17b2o7b3o37bobo2b2o17b2o2bobo52b
obo2b2o17b2o2bobo80bobo2b2o17b2o2bobo$bo49bo112bobo40b2o32bobo84bo
bo68bobo70bobo7bo40b2o20bobo3bobo52b2o20bobo3bobo80b2o20bobo3bobo$
2bo47b2o58b3o50bobo40bo33bobo84bobo68bobo47b2o21bobo9bo60bobo5bo
74bobo5bo70b2o30bobo5bo$3o5bo33bo7bobo46bo10bo45bo7bo68bo7bo21bo
56bo7bo62bo7bo47bobo14bo7bo64bo7bo74bo7bo65bo12b2o30bo$7b2o31bo2bo
53bo2bo10bo42bo2bo73bo2bo27bo55bo2bo67bo2bo56bo12bo2bo69bo2bo79bo
2bo73b2o9bo23b3o$7bobo30bo2bo53bo2bo6b2o45bo2bo73bo2bo27b3o53bo2bo
67bo2bo49b2o18bo2bo54bo14bo2bo68bo10bo2bo72b2o22bo10b3o$41bo56bo7b
obo46bo76bo86bo70bo52b2o18bo57bo14bo51bobo15bobo10bo97bobo58b2o$3b
3o102bo5bo122bo86bo12b2o56bo12b2o32bo25bo12b2o36b3o19bo12b2o33b2o
16bobo14bo12b2o71b2o6bobo14bo12b2o27b2o$3bo109b2o121bobo84bobo11bo
bo54bobo11bobo56bobo11bobo56bobo11bobo32bo18b2o13bobo11bobo70bobo
6b2o13bobo11bobo28bo$4bo108bobo121bobo22b2o60bobo12bo55bobo12bo57b
obo12bo39b2o16bobo12bo67bobo12bo58b2o11b2o22bobo12bo$238b2o21b2o
62b2o12b2o55b2o12b2o57b2o12b2o37bobo17b2o12b2o67b2o12b2o58b2o35b2o
12b2o$263bo213b2o45bo25b2o81b2o53b3o7bo45b2o$476bobo38b2o30bobo80b
obo55bo52bobo$162bo104b3o127b2o7b3o61b2o3bobo40b2o23b2o3bobo42b3o
30b2o3bobo55bo47b2o3bobo$157b3obo105bo128bobo7bo62bobo4bo40bo24bob
o4bo45bo29bobo4bo52b2o49bobo4bo$159bob3o104bo59b3o64bobo9bo60bobo
70bobo50bo3b2o24bobo57bobo48bobo$158bo169bo67bo6b2o64bo72bo55bobo
24bo60bo49bo$318b2o9bo59b2o11bobo57b2o71b2o61bo19b2o109b2o$319bo5b
2o63bo13bo5bo52bo72bo82bo110bo$160b2o154b3o5bobo60b3o19b2o49b3o70b
3o80b3o81b3o13b3o8b3o15b2o$159b2o155bo9bo5bo54bo21bobo48bo72bo82bo
25bo59bo15bo8bo16bobo$161bo169b2o308bo59bo15bo26b2o$331bobo307b3o
94b2o$738bobo$738bo$240bo398b2o$239b2o398bobo$239bobo397bo$229bo
525b2o$229b2o3b2o518b2o$228bobo3bobo395b2o111b2o9bo$234bo398b2o
110bobo$632bo112bo2$225b2o515b2o$224bobo514bobo$226bo516bo4$747b2o
$746b2o$748bo$751bo$750b2o$731b2o17bobo$730bobo$732bo!

Sample occurrences

There are 1 sample soups in the Catagolue:

Unofficial symmetries

SymmetrySoupsSample soup links

oscthread_stdin 1  

Comments (0)

There are no comments to display.

Please log in to post comments.

Catagolue — the largest distributed search of cellular automata.