(anonymous)  •  log in  
Home   •   Rules   •   Objects   •   Census   •   Software   •   Syntheses   •   Statistics

xp32_ybgk2gb3zyb11xg8gzy7333759a4w1y266zggy28k8xg8y0m3n6y0ee6x3bg2kgz1581qoxceex1y0131y2252y211zy6ccy2gw4aiksooozyd121xggzyfoq1851

#C [[ GRID THUMBLAUNCH THUMBSIZE 2 THEME Catagolue ]]
x = 1, y = 1, rule = B3/S23
b!
This pattern is an oscillator.
This pattern is periodic with period 32.
This pattern runs in standard life (b3s23).
The population fluctuates between 138 and 178.
This evolutionary sequence works in multiple rules, from b3-kys23-ky through to b34qt5a6eik7c8s234cetz5kr6ci7e.

Pattern RLE

Code: Select all

Glider synthesis

Code: Select all
#C [[ GRID MAXGRIDSIZE 14 THEME Catagolue ]]
#CSYNTH xp32_ybgk2gb3zyb11xg8gzy7333759a4w1y266zggy28k8xg8y0m3n6y0ee6x3bg2kgz1581qoxceex1y0131y2252y211zy6ccy2gw4aiksooozyd121xggzyfoq1851 costs 61 gliders (true).
#CLL state-numbering golly
x = 1001, y = 71, rule = B3/S23
138bo$138bobo$138b2o2$143bo$142bo176b2o149b2o214b2o72b2o216b2o$
142b3o50b3o59b3o283b3o324bo$194bo61bo60bo3bo71b3o72bo3bo69bo71b3o
67bo3bo69bo3bo106b3o104bo3bo$194bo3bo57bo3bo56bo4bo70b3o72bo4bo68b
o3bo67b3o67bo4bo68bo4bo104b3obo103bo4bo$130bo63bo2bobo56bo2bobo57b
obobo69b3o74bobobo67bo2bobo66b3o69bobobo69bobobo104bo3bo104bobobo$
obo128b2o53bobo7bobo2bo56bobo2bo56bobobo71b3o72bobobo68bobo2bo67b
3o67bobobo69bobobo104bo3bo104bobobo$b2o45bo81b2o55b2o8bo3bo57bo3bo
57bo4bo69b3o73bo4bo67bo3bo67b3o68bo4bo68bo4bo103bob3o104bo4bo$bo
44b2o35bobo101bo13bo61bo58bo3bo53bo15b3o74bo3bo71bo67b3o69bo3bo69b
o3bo104b3o106bo3bo$47b2o35b2o105bo6b3o59b3o110bo7b2o163b3o324bo$
84bo47b2o58b2o129b2o49bo5b2o92b2o214b2o72b2o216b2o$131bobo57b2o63b
o61bo53b3o17bo57bo18bo72bo70bo71bo73bo108bo8bo99bo$133bo52bo68bobo
59bobo71bobo4b4o46bobo17bobo2bo67bobo68bobo4b4o61bobo71bobo2bo103b
obo3bo102bobo$84b2o50b2o2b2o45b2o10b2o2b2o51bo3b2o3b2o51bo4b2o2b2o
47bo15bo4b2o3bo46b2o18bo3bo4b2o62bo3b2o3b2o60bo4b2o3bo61bo4b2o2b2o
63bo3bo4b2o98bo3bo5bo98bo4b2o2b2o$85b2o48bobo2b2o44b2o10bobo2b2o
54b2o4b2o55bobo2b2o47b2o18bo5bo58b2o9b2o4b2o54b2o9b2o4b2o52b2o10bo
5bo53b2o10bobo2b2o55b2o9b2o4b2o90b2o10bo4b2o90b2o10bobo2b2o$23bo
56bo3bo51bo62bo59b2o50bo9bo2bo50bobo17bo2b2obo43bo15b2o71b2o9b2o
58b2o9bo2b2obo54b2o9bo2bo59b2o107b2o9bo97b2o9bo2bo$21b2o57b2o169bo
7b3o47bobo10b2o72b3o47bo98b3o69b3o51b2o16b2o54b2o125bo2bo87b2o16b
2o$3bo10bo7b2o55bobo170b2o6b2o48b2o132b3o80b3o16b2o306bo17b2o$bobo
9bo171b3o63b2o131b2o75b2o67bo3b2o62b3o4bo64bo3bo69bo3bo2b3o99b3o4b
2o100bo3bo$2b2o9b3o171bo196bobo74bobo62bo3bo3bobo61b3o3bobo62bo4bo
68bo4bo2bo2bo97bob3o3bobo98bo4bo10b2o$89bo53bo7b2o33bo19bo61bo43b
2o7bo8bo7b2o45bo9bo8bo57bo9bo8bo7b2o34bobo2bo4bo9bo8bo43b3o6bo8bo
8bo42bobobo3b3o9bo8bo7b2o35bobobo5bobo7bo8bo7b2o70bo3bo6bo8bo8bo
79bobobo3b3o3b3obo10bo7b2o$88bobo6bo44bobo60bobo5b3o36b2o13bobo5b
3o33b2o7bobo6bobo62bobo6bobo65bobo6bobo40bo2bobo15bobo6bobo5b3o31b
3o6bobo8bobo6bobo40bobobo6bo8bobo6bobo42bobobo7bo7bobo6bobo77bo3bo
4bo2bo7bobo6bobo6bo70bobobo6bo4b2o5b2o4bobo$89bo53bo6bo3bo51bo9bo
36b2o13bo9bo34bo5bo2bo7bo6bo3bo51bo2bo7bo6b3o44b3o9bo2bo7bo6bo3bo
30bo3bo15bo2bo7bo9bo30b3o7bo8bo2bo7bo6b3o30bo4bo15bo2bo7bo6bo3bo
30bo4bo15bo2bo7bo6bo3bo66b3obo15bo2bo5bo2bo5b3o67bo4bo12b2obo3b2o
5bo6bo3bo$17bo77b3obo49bo4bo57bo3bo35bo21bo3bo41b2o14bo4bo52b2o7bo
7b3o40bo3bo12b2o14bo4bo30bo20b2o14bo3bo30b3o6bo10b2o7bo7b3o30bo3bo
6bo10b2o14bo4bo30bo3bo6bo10b2o14bo4bo67b3o5bo2bo8b2o14bob3o66bo3bo
6bo8b2o4bo11bo4bo$15b2o69bo7bob2o43bo6bobobo49b3o6bobo2bo56bobo2bo
49bo6bobobo62bobo6b3o40b2o3bo18bo7bobobo33b3o32bobo2bo38bobo17bobo
6b3o40bobo17bo6bobobo42bobo16bo7bobobo70bo6bobo16bo2bo4bo3bo77bobo
17bo6bobobo$16b2o67bobo6b2obo43b3o3bobobo49b5o3bo2bobo33b2o14b2o5b
o2bobo51b3o3bobobo62bo6b3o42bobo21bobo5bobobo41bo18b2o5bo2bobo41bo
17bo6b3o35b2o7bo18b3o3bobobo35b2o7bo16bobo5bobobo79bo17bo6bo3bo70b
2o7bo18b3o3bobobo$85bo2bo3bob3o48bo4bo50b2o2bo3bo3bo33bobo15bobo3b
o3bo56bo4bo64bobo3b3o66bo2bo2bo4bo42b2o18bobo3bo3bo61bobo3b3o54b2o
11bo4bo55b2o5bo2bo2bo4bo38bo51b2o6bobo3b3obo103bo4bo$20bo65b3o56bo
3bo59bo39bo16b2o3bo60bo3bo66bo4b3o67b3o2bo3bo42bobo19b2o3bo66bo4b
3o53bobo11bo3bo55bobo6b3o2bo3bo39bobo48bobo7b2o4b3o104bo3bo$18b2o
67bo6bo115b3o59b3o283b3o125bo73bo56b2o50bo15bo$19b2o126b2o185b2o
149b2o214b2o72b2o198b2o16b2o$87b2o52b2o61b2o60b2o60b2o72b2o75b2o
46b2o5bo17b2o69b2o70b2o60bo11b2o44bo50bo11b2o94bo2bo9b2o$87b2o52b
2o61b2o60b2o60b2o72b2o75b2o47b2o4b2o3b2o11b2o59bo9b2o70b2o59bobo
10b2o42bobo49bobo10b2o90b2o2bobo10b2o$20bo4b2o500bo5bobo3bobo71b2o
141b2o56b2o49b2o103b2o2b2o4bo$19b2o4bobo511bo72bobo203b2o101bo57bo
bo$7b2o10bobo3bo657bo135b2o98b2o59bo$6bobo674b2o3bo129bo101b2o52b
2o9b2o$8bo604bo4b2o62bobo2b2o177bo57b2o38b3o17bobo$613b2o3bobo66bo
bo175b3o56bobo45bo3bo8bo$612bobo3bo245b3obo55bo35b3o9bo4bo$764bo
100bo3bo92bo11bobobo$763b2o101bo3bo50b2o38bo13bobobo8b3o$684b3o76b
obo101bob3o48bobo53bo4bo6bo$686bo181b3o51bo54bo3bo7bo$685bo73b3o
84b3o20bo$761bo86bo129b2o$760bo86bo$764bo$745b3o15b2o$747bo15bobo$
746bo2$750b2o$749bobo139b2o$751bo139bobo$891bo3$834b3o59bo$836bo
58b2o$835bo59bobo5$902b2o$901b2o$903bo!

Sample occurrences

There are 1 sample soups in the Catagolue:

Unofficial symmetries

SymmetrySoupsSample soup links

oscthread_stdin 1  

Comments (0)

There are no comments to display.

Please log in to post comments.

Catagolue — the largest distributed search of cellular automata.