Popover (xp32_y24473jssxcczy5gjgw4aicwgy2eoozwccwo4k8y63w1176611zggccsgg10oy079020202d3w66z33ey21w69a4w1p1zy866x77pos44)
|
|
Pattern RLE
Code: Select all
Glider synthesis
Code: Select all
#C [[ GRID MAXGRIDSIZE 14 THEME Catagolue ]]
#CSYNTH xp32_y24473jssxcczy5gjgw4aicwgy2eoozwccwo4k8y63w1176611zggccsgg10oy079020202d3w66z33ey21w69a4w1p1zy866x77pos44 costs 79 gliders (true).
#CLL state-numbering golly
x = 1159, y = 197, rule = B3/S23
961bo$960bo$960b3o2$964b3o$957bobo4bo$958b2o5bo$958bo13$993bo$991b
2o$992b2o2$949bo$950bo$948b3o15$897bo$895bobo$896b2o8$1024bobo$
1024b2o$1025bo$1020bo$1019bo$1019b3o6bo$1027bo$1027b3o$908bo$909bo
$907b3o3$996b2o16bo$995b2o10bo5bo$997bo8bo6b3o$1006b3o2$1004bo$
1002b2o$1003b2o3$1024bo$1022b2o$1023b2o17$548bo6bo$546bobo5bo$547b
2o5b3o9bo$510bo55bobo$510bobo53b2o$510b2o$553b2o$554b2o597b2o$553b
o599b2o2$1156b2o$503bo652bobo$498bo3b2o652bo$498b2o2bobo172bo$497b
obo175bobo$613bo62b2o160bo282bo$612bobo56b3o6bo47b3o51b3o53bo103b
3o176bo$388bo57bo106bo117b3o6bobo45b3o51b3o51b3o103b3o174b3o$387bo
58bobo103bobo7bo48b2o3bo52b3o2b2o4b2o44b3o2b2o3b2o42b3o2b2o3b2o44b
2o7b2o93b3o2b2o3b2o167b2o7b2o$387b3o52bo3b2o104bo2bo5bobo47bo5bo9b
o46b2o55b2o3b2o47b2o3b2o44b2o2b3o2b2o98b2o3b2o167b2o2b3o2b2o$393bo
49bo109b2o6b2o51bobo8b2o46b3o54b3o51b3o51b3o103b3o128bo45b3o$393bo
bo45b3o169b2o11b2o2b2o41bo56bo53bo53b3o103bo128b2o46b3o$385bobo5b
2o235bobo40bo4b2o50bo4b2o47bo4b2o53b2o98bo4b2o123b2o51b2o$386b2o
242bo46bo2bo53bo2bo50bo2bo51bo2bo15bobo83bo2bo174bo2bo8b3o$386bo
227bo63bobo54bobo51bobo52bobo15b2o85bobo175bobo8b3o$502b3o53b3o53b
o57b3o4bo49b3o4bo46b3o4bo47b3o4bo17bo79b3o4bo170b3o5bo2bo3b2o2b3o$
246bo67bo299bo106bo135bo271bo2bo3b2o$247bo67bo311b3o92bo133bo269bo
2bo2bo3b3o$50bo54bo139b3o65b3o127b2o45b2o8b2o54b2o53b2o14bo42b2o
48b3o4b2o47b2o3b2o48b2o3b2o18b3o77b2o3b2o19b2o150b2o3b2o6bobo8bo$
51bo51bobo336bo2bo43bobo7bo2bo52bo2bo51bo2bo14bo40bo2bo53bo2bo46b
2o2bo2bo47b2o2bo2bo97b2o2bo2bo18b2o150bo3bobo8b2o7bo$49b3o47bo4b2o
3bo43bo51bo64bo68bo55bo46bobo4bo41bo7bobo3bo49bobo3bo48bobo4bo51bo
bo3bo50bobo3bo47bobo3bo48bobo3bo18b2o78bobo3bo9bo162bo7bobo4bo$57b
o39bobo8bo42bobo49bobo65b2o57bo9b2o51bobo47bo3bobo50bo5b2o48bo5b2o
47bo3bobo52bo5b2o39b3o7bo5b2o46bo5b2o47bo5b2o16bobo78bo5b2o6bobo
161bo7b2o4bobo$17bo39bobo38bobo7b3o34bo6bobo49bobo62b2o58bobo6b2o
45bo8bobo42bo8bobo45bo7b2o54b2o45bo8bobo55b2o43bo11b2o52b2o45bo7b
2o18bo84b2o7bo2bo157bo16bo2bo2b2o$16bo36bo3b2o3bo35bo47bo5bo41bo9b
o66bo58b2o8bo43bobo7bo43bobo7bo47bo9bo44b3o8bo43bobo7bo48b3o8bo41b
o3b3o8bo42b3o8bo44bo9bo93b3o8bo7b2o158bo17b2o3b2o$16b3o35bo7bobo
79b3o48bo59bo11bo68bo159b3o3bo48b3o4bo106b3o4bo49b3o4bo46b3o4bo48b
3o3bo17b3o77b3o4bo171b3o3bo$52b3o7b2o95bo33b3o15bo41b2o12bo68bo45b
o3b2o2b3o8bo34bo3b2o2b3o8bo41b2o3bo46b2o2b3o2bo45bo3b2o2b3o8bo39b
2o2b3o2bo47b2o2b3o2bo44b2o2b3o2bo49b2o3bo17bo77b2o2b3o2bo172b2o3bo
$159bo45bo5bo42b2o11bo3bo4b3o57bo3bo4b3o33bo5bo7bo5bo33bo5bo7bo5bo
36b3o2b2o3bo3bo4b3o35b2o7bo3bo4b3o33bo5bo7bo5bo39b2o7bo3bo4b3o36b
2o7bo3bo4b3o33b2o7bo3bo4b3o33b3o2b2o3bo3bo4b3o7bo76b2o7bo3bo4b3o
156b3o2b2o3bo3bo4b3o$o10bo147bo44bobo4bo58bobo66bobo40bobo9bobo4bo
34bobo9bobo4bo38b3o8bobo41b3o9bobo40bobo9bobo4bo39b3o9bobo42b3o9bo
bo39b3o9bobo41b3o8bobo90b3o9bobo164b3o8bobo$b2o7bo132bo52b2o6bo2bo
62bo2bo39bo25bo2bo41b2o8bo2bo40b2o8bo2bo42b3o8bo2bo42bo9bo2bo41b2o
8bo2bo45bo9bo2bo43bo9bo2bo40bo9bo2bo40b3o8bo2bo91bo9bo2bo163b3o8bo
2bo$2o8b3o128bobo51bobo7b2o48b2o14b2o38bobo4bo11bo9b2o4bo48b2o52b
2o55b2o43bo10b2o4bo48b2o46bo10b2o4bo39bo10b2o4bo36bo10b2o4bo48b2o
92bo10b2o4bo171b2o$62b3o40b2o35b2o2b2o11b2o36bo13b2o41b2o20b3o33b
2o3b2o10bobo14bo54b2o52b2o54b3o54bo54b2o57bo56bo53bo53b3o103bo176b
3o$14b3o45b3o38bobo41b2o8bobo49bobo44bo19b3o38bobo8bo2bo12b3o52bob
o51bobo55b3o52b3o52bobo56b3o54b3o51b3o53b3o101b3o176b3o$14bo45b3o
2b2o35bo5bo37bo9bo5bo45bo5bo59b3o2b2o48b2o13b2o52bo5bo47bo5bo50b3o
2b2o50b2o52bo5bo53b2o55b2o52b2o48b2o2b3o2b2o94b2o3b2o171b2o2b3o2b
2o$15bo49b2o36bo3b2o48bo3b2o46bo3b2o64b2o63b2o2b3o48bo3b2o48bo3b2o
55b2o50b2o2b3o48bo3b2o53b2o2b3o50b2o2b3o41b2o4b2o2b3o43b2o7b2o94b
2o3b2o2b3o120b2o44b2o7b2o$64b3o211b3o65b3o164b3o52b3o111b3o54b3o
42bobo6b3o53b3o101b3o122bobo51b3o$64bo40bobo51bobo49bobo64bo67b3o
52bobo51bobo55bo54b3o52bobo56b3o54b3o44bo6b3o53bo103b3o122bo53bo$
64bo41bo53bo51bo65bo32b3o88bo53bo56bo110bo164b2o58bo282bo$270b3o
40bo475bobo263b2o$12bo257bo41bo476bo264bobo$11b2o258bo784bo$11bobo
6$1019b2o$1019bobo$1019bo3$1031b3o$1031bo$1032bo7$1012b3o$1012bo$
1013bo2$1017b3o$1017bo$1018bo6$993b3o$993bo31b3o$994bo30bo$927bo
98bo$927b2o$926bobo7$998b2o$998bobo$998bo2$1027b2o$1027bobo$1027bo
$1032bo$1031b2o$1031bobo!
Sample occurrences
There are 14 sample soups in the Catagolue:
Unofficial symmetries
Symmetry | Soups | Sample soup links |
---|---|---|
b3s23osc_stdin | 13 | • • • • • • • • • • • • • |
jslife_stdin | 1 | • |
Comments (0)
There are no comments to display.
Please log in to post comments.