(anonymous)  •  log in  
Home   •   Rules   •   Objects   •   Census   •   Software   •   Syntheses   •   Statistics

p26 glider shuttle (xp26_ymc4go4q9jzypgg01zycgy71687xo8gzggwgy465110ggy78gox32z124bq1xciaa4y0211y71zw32ywgg8gy0oi6zyfocgy64cay012221x4a61aczya2egoy0gy9c453zyh78b4zyf8ko0o80gzyf6421w11)

#C [[ GRID THUMBLAUNCH THUMBSIZE 2 THEME Catagolue ]]
x = 1, y = 1, rule = B3/S23
b!
This pattern is a oscillator.
This pattern is periodic with period 26.
This pattern runs in standard life (b3s23).
The population fluctuates between 148 and 256.
This evolutionary sequence works in multiple rules, from b3s23 through to b34cz8s234c5er8.

Pattern RLE

Code: Select all

Glider synthesis

Code: Select all
#C [[ GRID MAXGRIDSIZE 14 THEME Catagolue ]]
#CSYNTH xp26_ymc4go4q9jzypgg01zycgy71687xo8gzggwgy465110ggy78gox32z124bq1xciaa4y0211y71zw32ywgg8gy0oi6zyfocgy64cay012221x4a61aczya2egoy0gy9c453zyh78b4zyf8ko0o80gzyf6421w11 costs 84 gliders (true).
#CLL state-numbering golly
x = 804, y = 71, rule = B3/S23
90bo$88b2o$89b2o4$25bo$25b2o3bo50bo$24bobo2b2o46bo3bobo338bo262bo$
29bobo43bobo3b2o6b2o65b2o84b2o103b2o71bobo25b2o9bo72b2o81b2o67bo
14b2o82b2o$76b2o11b2o64bobo83bobo102bobo72b2o24bobo7b2o72bobo80bob
o67b3o11bobo81bobo$150b2o2bo81b2o2bo100b2o2bo96b2o2bo11b2o66b2o2bo
78b2o2bo79b2o2bo79b2o2bo$150bo2bob2o79bo2bob2o98bo2bob2o94bo2bob2o
77bo2bob2o61bo14bo2bob2o77bo2bob2o77bo2bob2o$78bo73b2obobo80b2obob
o99b2obobo95b2obobo18bo59b2obobo58bobo3bobo10b2obobo65b2o11b2obobo
78b2obobo$78b2o76bo85bo104bo100bo9b2o7bo64bo60b2o3b2o15bo65bo2bo
14bo83bo$77bobo3bo374bobo6b3o129bo81bo2bo24bobo$84b2o7b2o363bo223b
2o25b2o$83b2o7bo2bo326bo109bo82bo57bo25bo10bo72bo$93b2o321bobo2bo
109bobo80bobo14bo42b2o22bobo81bobo$299bo76bo40b2o2b3o107b2o81b2o
14bo42b2o23b2o77bobo2b2o$83bo216bo73b2o41bo212b3o145b2o$83b2o43bo
169b3o74b2o401bo$39bo42bobo41bobo225bo417bobo11b2o$38b2o87b2o89bo
104bo28b2o359b2o52bo5b2o11bobo$38bobo165bo10bobo102bobo28b2o2b2o
271b2o80bo2bo49b3o5bo14bo$130b2o75bo9bobo102bobo32bobo269b2o81bo2b
o48bo23b2o$129bobo73b3o10bo104bo23bo9bo10bo262bo81b2o3b2o44b2o$
131bo173bo39bobo19bo162bo187bobo$306b2o7b2o29b2o19b3o46b2o2bo79b2o
2bo4bo19bo53b2o2bo4bo17b2o55b2o2bo4bo17b2o22bo32b2o2bo4bo17b2o$
208b3o94b2o8b2o99bo2bobo78bo2bobo2bobo14bo3b3o51bo2bobo2bobo15bobo
55bo2bobo2bobo15bobo55bo2bobo2bobo15bobo$210bo206bob2o80bob2o4b2o
9bo4b2o57bob2o4b2o16bo57bob2o4b2o16bo57bob2o4b2o16bo11bo$209bo208b
o83bo15bobo3bobo58bo83bo83bo34b2o$419b2o82b2o14b2o65b2o82b2o82b2o
33b2o$420bo83bo25bo56bo14b2o67bo14b2o67bo5b2o7b2o$418bo83bo28b2o
52bo16bobo64bo16bobo64bo8b2o6bobo$418b2o45b2o35b2o17b2o7b2o17b2o
34b2o16bo11bo16b2o35b2o16bo11bo16b2o35b2o6bo9bo11bo9bo6b2o$466bo
53b2o28bo63bobo16bo64bobo16bo64bobo6b2o8bo$464bo57bo25bo66b2o14bo
67b2o14bo67b2o7b2o5bo$464b2o66b2o14b2o81b2o82b2o47b2o33b2o$263bo
202bo59bobo3bobo15bo82bo83bo47b2o34bo$262bo201b2obo58b2o4bo9b2o4b
2obo56bo16b2o4b2obo57bo16b2o4b2obo45bo11bo16b2o4b2obo$262b3o101b2o
8b2o85bobo2bo52b3o3bo14bobo2bobo2bo54bobo15bobo2bobo2bo55bobo15bob
o2bobo2bo55bobo15bobo2bobo2bo$313b3o19b2o29b2o7b2o87bo2b2o54bo19bo
4bo2b2o54b2o17bo4bo2b2o32bo22b2o17bo4bo2b2o55b2o17bo4bo2b2o$169bo
145bo19bobo39bo144bo143bobo$169bobo82bo10b3o46bo10bo9bo23bo227bo
79b2o3b2o115b2o$169b2o82bobo9bo57bobo32bobo227b2o81bo2bo90b2o23bo$
obo250bobo10bo57b2o2b2o28bobo226b2o82bo2bo91bo14bo5b3o$b2o169b2o
80bo74b2o28bo312b2o92bobo11b2o5bo$bo80bobo87bobo153bo438b2o11bobo$
82b2o88bo133b2o74b3o391bo$83bo223b2o73bo84bo118b3o186b2o$306bo76bo
77b3o2b2o52b2o66bo14b2o82b2o23b2o57b2o2bobo$72b2o389bo2bobo50bobo
65bo14bobo81bobo22b2o57bobo$71bo2bo7b2o378bo57bo82bo72bo10bo25bo
57bo$72b2o7b2o343bo249b2o25b2o$83bo3bobo325b3o6bobo192bo55bobo24bo
2bo$87b2o55bo85bo104bo81bo7b2o9bo83bo82bo15b2o3b2o61bo14bo2bo65bo$
88bo54bobob2o80bobob2o99bobob2o76bo18bobob2o78bobob2o77bobob2o10bo
bo3bobo59bobob2o11b2o65bobob2o$144b2obo2bo79b2obo2bo98b2obo2bo94b
2obo2bo77b2obo2bo76b2obo2bo14bo62b2obo2bo77b2obo2bo$146bo2b2o81bo
2b2o100bo2b2o83b2o11bo2b2o79bo2b2o78bo2b2o79bo2b2o79bo2b2o$76b2o
11b2o52bobo83bobo102bobo89b2o7bobo24b2o55bobo80bobo81bobo11b3o67bo
bo$9bobo64b2o6b2o3bobo51b2o84b2o103b2o89bo9b2o25bobo54b2o81b2o82b
2o14bo67b2o$10b2o2bobo66bobo3bo372bo238bo$10bo3b2o69bo$15bo4$76b2o
$77b2o$76bo!

Sample occurrences

There are 3 sample soups in the Catagolue:

Unofficial symmetries

SymmetrySoupsSample soup links

b3s23osc_stdin 3    

Comments (0)

There are no comments to display.

Please log in to post comments.

Catagolue — the largest distributed search of cellular automata.