(anonymous)  •  log in  
Home   •   Rules   •   Objects   •   Census   •   Software   •   Syntheses   •   Statistics

xp18_wgbdwck80uiz320f9wccw1023zy2c8ex66zw33y9cczy366x713zy2c4gowj3w9fg4czy4470123wbd

#C [[ GRID THUMBLAUNCH THUMBSIZE 2 THEME Catagolue ]]
x = 1, y = 1, rule = B3/S23
b!
This pattern is an oscillator.
This pattern is periodic with period 18.
This pattern runs in standard life (b3s23).
The population fluctuates between 98 and 132.
This evolutionary sequence works in multiple rules, from b3-kys23-y through to b34ce5e6cn8s234cez5e6ei.

Pattern RLE

Code: Select all

Glider synthesis

Code: Select all
#C [[ GRID MAXGRIDSIZE 14 THEME Catagolue ]]
#CSYNTH xp18_wgbdwck80uiz320f9wccw1023zy2c8ex66zw33y9cczy366x713zy2c4gowj3w9fg4czy4470123wbd costs 106 gliders (true).
#CLL state-numbering golly
x = 2075, y = 58, rule = B3/S23
137bo946bo$138bo946bo$37bo98b3o944b3o$35b2o507bo$36b2o504bobo1449b
o$543b2o1448bo74bo$1870bo122b3o72bobo$1868bobo197b2o$903bo181bobo
781b2o180bo$904bo180b2o786bo175bobo$5bo149bobo744b3o175bobo3bo785b
o117bobo57b2o$6b2o23bo123b2o750bo173b2o780bobo6b3o116b2o2bobo$5b2o
23bo125bo749bo174bo782b2o125bo3b2o$30b3o118bobo752b3o60b2o62b2o63b
2o450bo313bo131bo$10bobo123bo14b2o815bo2bo60bo2bo61bo2bo449bobo
372bo120bobo7bo$11b2o25bo36b2o57bobo15bo15b2o62b2o67b2o74b2o62b2o
62b2o70b2o68b2o46bo27b2o62b2o62b2o62b2o52b2o8b2o52b2o8b2o53b2o8b2o
62b2o62b2o62b2o62b2o62b2o62b2o56b2o4b2o62b2o62b2o62b2o62b2o62b2o
47bobo12b2o62b2o41b2o5bobo3b2o6b2o$11bo24b2o37bo59b2o20b2o9bo63bo
68bo75bo48bo14bo63bo71bo69bo48b2o25bo63bo63bo63bo63bo63bo64bo63bo
63bo63bo63bo63bo63bo54bo8bo63bo63bo63bo63bo63bo44bo3b2o13bo63bo42b
o7b2o2bobo6bo$37b2o38bo78b2o12bo63bo68bo75bo47b2o14bo63bo71bo69bo
45b2o28bo63bo63bo63bo63bo63bo64bo63bo63bo63bo63bo63bo63bo50bobo10b
o63bo63bo63bo63bo63bo43bo19bo63bo53bo9bo$73b4obob2o76bo7b4obob2o
55b4obob2o60b4obob2o67b4obob2o42b2o11b4obob2o55b4obob2o63b4obob2o
61b4obob2o67b4obob2o55b4obob2o55b4obob2o55b4obob2o55b4obob2o55b4ob
ob2o56b4obob2o55b4obob2o55b4obob2o55b4obob2o55b4obob2o55b4obob2o
55b4obob2o47b2o6b4obob2o48b2o5b4obob2o55b4obob2o55b4obob2o55b4obob
2o55b4obob2o37b3o15b4obob2o55b4obob2o55b4obob2o$73bo2bob2obo84bo2b
ob2obo55bo2bob2obo60bo2bob2obo67bo2bob2obo55bo2bob2obo55bo2bob2obo
63bo2bob2obo37bo23bo2bob2obo67bo2bob2obo55bo2bob2obo55bo2bob2obo
55bo2bob2obo55bo2bob2obo55bo2bob2obo56bo2bob2obo55bo2bob2obo55bo2b
ob2obo55bo2bob2obo55bo2bob2obo55bo2bob2obo55bo2bob2obo55bo2bob2obo
48b2o5bo2bob2obo45bo9bo2bob2obo55bo2bob2obo55bo2bob2obo55bo2bob2ob
o55bo2bob2obo55bo2bob2obo55bo2bob2obo$617bo3bobo73b2o65bo6bo56bo
63bo127bo330bo318bobo258b2o62b2o62b2o$428bo186bobo3b2o75b2o64bo6bo
bo54bo5bo57bo5bo56b3o4bo57bo5bo57b3o4bo58b2o62b2o6bobo53b2o62b2o5b
obo54b2o7bo54b2o62b2o62b2o62b2o7b2o53b2o62b2o62b2o62b2o12bo49b2o5b
o6bo49b2o5bo6bo$83bo220b2o74b2o44bobo15b2o50b2o10b2o58b2o10b2o34b
2o32b2o45bo28b2o36bo6b2o17b2o36bo4bobo6bo11b2o36bo4bobo18b2o41bobo
18b2o36bo4bobo18b2o42bobo18b2o38bo12bo10b2o38bo6b2o15b2o38bo23b2o
38bo6b2o15b2o38bo5bobo10b2o3b2o38bo11bo6b2o3b2o38bo13bo4b2o3b2o38b
o18b2o3b2o38bo18b2o3b2o38bo18b2o3b2o38bo18b2o3b2o38bo18b2o3b2o38bo
12bobo3b2o3b2o38bo5bo6bobo3b2o3b2o38bo5bo6bobo3b2o3b2o$82bobo218bo
bo11bo61bobo45b2o14bobo49bo2bo8bobo57bo2bo8bobo67bobo73bobo32b2o
27bobo32b2o7bobo7b2o8bobo32b2o7bobo17bobo32b2o7bobo17bobo32b2o7bob
o17bobo33b2o7bobo17bobo33bo2bo15b2o7bobo33bo2bo9bo6b2o6bobo33bo2bo
16b2o6bobo33bo2bo16b2o6bobo33bo2bo8b2o10b2o2bobo33bo2bo14b2o4b2o2b
obo33bo2bo15bo4b2o2bobo33bo2bo14b3o3b2o2bobo33bo2bo20b2o2bobo33bo
2bo20b2o2bobo33bo2bo20b2o2bobo33bo2bo20b2o2bobo33bo2bo15b2o3b2o2bo
bo33bo2bo7bo7b2o3b2o2bobo33bo2bo7bo7b2o3b2o2bobo$82bobo153bo65bo
12bobo49bo10bo63bo51b2o10bo59b2o10bo38bobo28bo75bo33b2o12b2o14bo
33b2o8bo7b2o10bo33b2o8bo19bo33b2o8bo19bo33b2o8bo19bo34b2o8bo19bo
34b5o13b2o9bo34b5o15b2o7bo34b5o15b2o7bo34b5o10bobo2b2o7bo34b5o24bo
34b5o12b2o10bo34b5o14bo9bo34b5o10bo13bo34b5o7b2o15bo34b5o13bo10bo
34b5o13b2o9bo34b5o13b2o9bo34b5o24bo34b5o24bo34b5o24bo$o82bo55bo97b
2o78b2o48bobo250b2o63b2o87bobo577b2o252b2o59b2o63b2o5b2o55b2o4b2o
62b2o$b2o136b2o96bobo128b2o12b2o44b2o7bo8b2o53bo8b2o61bo8b2o36bo
27b5o31bobo12bo24b5o34bo10bo13b5o34bo24b5o34bo10b2o12b5o34bo10b2o
12b5o34bo10b2o12b5o35bo10b2o12b5o34bo24b5o34bo10b2o12b5o34bo9bo14b
5o34bo13bo10b5o34bo9b2o13b5o34bo7b2o15b5o34bo7b2o15b5o34bo7b2o2bob
o10b5o34bo10bo13b5o34bo9b2o4b2o7b5o34bo9b2o13b5o34bo24b5o34bo24b5o
34bo24b5o34bo24b5o$2o83b3o50bobo9b2o230b2o43b2o7bobo7b2o52bobo7b2o
60bobo7b2o65bo2bo33bo11bobo24bo2bo33bobo24bo2bo33bobo14b2o8bo2bo
33bobo8bo2bo12bo2bo33bobo8bo2bo12bo2bo33bobo8bo2bo12bo2bo34bobo8bo
2bo12bo2bo33bobo14b2o8bo2bo33bobo8b2o14bo2bo33bobo8bo15bo2bo33bobo
7b3o14bo2bo33bobo7b2o15bo2bo33bobo6b2o6bo9bo2bo33bobo6b2o16bo2bo
33bobo6b2o16bo2bo33bobo2b2o20bo2bo33bobo2b2o20bo2bo33bobo2b2o20bo
2bo33bobo2b2o3b2o15bo2bo33bobo2b2o3b2o15bo2bo33bobo2b2o3b2o7bo7bo
2bo33bobo2b2o3b2o7bo7bo2bo$85bo63b2o90b2o63bo64b2o6bo49bo6bobo4bo
56bobo4bo64bobo72bo50b2o23bo38b2o23bo38b2o15bobo5bo38b2o10b2o11bo
38b2o10b2o11bo38b2o10b2o11bo39b2o10b2o11bo38b2o15bobo5bo38b2o11bo
11bo38b2o9bo13bo38b2o23bo38b2o10bo12bo38b2o15b2o6bo38b2o23bo38b2o
15b2o6bo38b2o3b2o18bo38b2o3b2o18bo38b2o3b2o18bo38b2o3b2o3bobo12bo
38b2o3b2o3bobo12bo38b2o3b2o3bobo6bo5bo38b2o3b2o3bobo6bo5bo$11bo74b
o58b2o4bo84b2o3bobo60b2o64bobo6bo57bo5bo57bo5bo65bo4b3o66b2o74b2o
62b2o54bo7b2o62b2o62b2o57b2o3b2o58b2o3b2o54bo7b2o62b2o62b2o62b2o
62b2o53bobo6b2o62b2o54bobo5b2o62b2o53b2o7b2o62b2o49bo12b2o49bo12b
2o49bo6bo5b2o49bo6bo5b2o$9b2o133bobo9bo78bobo3bo63b2o65bo6bo63bo
63bo530bobo62bobo506bo126bobo121b2o62b2o62b2o62b2o$10b2o134bo8b2o
48bob2obo2bo23bo36bob2obo2bo67bob2obo2bo55bob2obo2bo55bob2obo2bo
63bob2obo2bo61bob2obo2bo67bob2obo2bo55bob2obo2bo55bob2obo2bo55bob
2obo2bo55bob2obo2bo11bo43bob2obo2bo14bo41bob2obo2bo14bo40bob2obo2b
o55bob2obo2bo55bob2obo2bo55bob2obo2bo5b2o48bob2obo2bo55bob2obo2bo
55bob2obo2bo55bob2obo2bo55bob2obo2bo55bob2obo2bo9bo45bob2obo2bo55b
ob2obo2bo55bob2obo2bo55bob2obo2bo55bob2obo2bo$155bobo47b2obob4o60b
2obob4o67b2obob4o55b2obob4o55b2obob4o63b2obob4o61b2obob4o67b2obob
4o55b2obob4o55b2obob4o11b2o42b2obob4o55b2obob4o11b2o42b2obob4o56b
2obob4o55b2obob4o55b2obob4o55b2obob4o6b2o47b2obob4o5b2o48b2obob4o
55b2obob4o55b2obob4o55b2obob4o55b2obob4o55b2obob4o55b2obob4o55b2ob
ob4o55b2obob4o15b3o37b2obob4o55b2obob4o$209bo68bo28b2o45bo63bo63bo
71bo69bo75bo63bo63bo14b2o47bo63bo14bobo46bo64bo63bo63bo63bo10bobo
50bo63bo63bo63bo63bo63bo63bo63bo63bo63bo19bo43bo63bo9bo$11b2o198bo
68bo25b2o48bo63bo63bo71bo69bo75bo63bo63bo14bo48bo63bo63bo64bo63bo
63bo63bo8bo54bo63bo63bo63bo63bo63bo63bo63bo63bo63bo13b2o3bo44bo63b
o6bobo2b2o7bo$10b2o198b2o67b2o27bo46b2o62b2o62b2o70b2o8b2o58b2o74b
2o62b2o62b2o62b2o62b2o9b2o51b2o63b2o62b2o62b2o62b2o4b2o56b2o62b2o
62b2o62b2o62b2o62b2o62b2o62b2o62b2o62b2o12bobo47b2o62b2o6b2o3bobo
5b2o$12bo551bo2bo399bobo3b2o308bobo648bo124bo7bobo$491b3o71b2o402b
o3bobo120b2o187bo517bo187bo$140bo352bo89bo389bo58bo63bobo703b2o
187b2o3bo$119b2o19b2o350bo89b2o447b2o64b2o694b3o6bobo185bobo2b2o$
118bobo18bobo353b3o80bo3bobo446bobo761bo199bobo66b2o$120bo374bo82b
2o446b3o765bo269bobo$40b3o453bo80bobo448bo768b2o265bo$40bo986bo4bo
764bobo246b2o$41bo989b2o764bo194b3o50bobo$1031bobo960bo52bo$1993bo
2$579b3o$579bo511b2o$580bo509bobo$1092bo4$39b2o$39bobo$39bo!

Sample occurrences

There are 1 sample soups in the Catagolue:

Unofficial symmetries

SymmetrySoupsSample soup links

oscthread_stdin 1  

Comments (0)

There are no comments to display.

Please log in to post comments.

Catagolue — the largest distributed search of cellular automata.