(anonymous)  •  log in  
Home   •   Rules   •   Objects   •   Census   •   Software   •   Syntheses   •   Statistics

p110 lumps of muck hassler (xp110_y9g88e1e8y4c88gx1784s0gg0gzya113033y611y21101011zy0qmyk79eydg8gzggma26yzy0qr0raa4z1xggy0g88ozw4701y0111yzo8zyzx6553y0321z8kkm0mmyzy0ogkq23zx343yds4oykqmzyk11y6gg0gzy731230f94oy0354cy45t0t552zyf11yd1)

#C [[ GRID THUMBLAUNCH THUMBSIZE 2 THEME Catagolue ]]
x = 1, y = 1, rule = B3/S23
b!
This pattern is an oscillator.
This pattern is periodic with period 110.
This pattern runs in standard life (b3s23).
The population fluctuates between 204 and 464.
This pattern is endemic (works in a unique rule).

Pattern RLE

Code: Select all

Glider synthesis

Code: Select all
#C [[ GRID MAXGRIDSIZE 14 THEME Catagolue ]]
#CSYNTH xp110_y9g88e1e8y4c88gx1784s0gg0gzya113033y611y21101011zy0qmyk79eydg8gzggma26yzy0qr0raa4z1xggy0g88ozw4701y0111yzo8zyzx6553y0321z8kkm0mmyzy0ogkq23zx343yds4oykqmzyk11y6gg0gzy731230f94oy0354cy45t0t552zyf11yd1 costs 112 gliders (true).
#CLL state-numbering golly
x = 734, y = 110, rule = B3/S23
130bo$131bo$129b3o2$178bo$177bo$177b3o3$158bo$156b2o$157b2o2$105bo
$106b2o$105b2o77bobo$184b2o$185bo3$96bo596bo$94bobo595bo$28bo66b2o
586bo8b3o$29bo654b2o$27b3o653b2o2$52bo283bo245bo112bo$50b2o213b2o
67bobo4bo10b2o85b2o84b2o56bo28b2o81bobo8b2o$51b2o213bo68b2o5b2o9bo
86bo85bo54b3o29bo72bo8b2o10bo$266bob2o71b2o10bob2o75bo7bob2o74bo7b
ob2o75bo7bob2o70b2o3bo6bo7bob2o$267bobo84bobo75b3o6bobo74b3o6bobo
55bo19b3o6bobo10bo58b2o2bobo6b3o6bobo$269bob2obo81bob2obo73bo7bob
2obo72bo7bob2obo51b2o20bo7bob2obo3bobo3bo59b2o9bo7bob2obo$160b3o
106bobob2o65bo14b2obob2o72b2o6b2obob2o71b2o6b2obob2o45b3o2b2o20b2o
6b2obob2o4b2o3bobo67b2o6b2obob2o$270bo69b2o2b3o235bo48b2o49b2o$
156bo110bo71bobo4bo234bo99bobo11bo$10bobo142bobo104bo3b2o77bo281bo
bo52bo10bobo$10b2o144bo103bobo3bobo162bo195b2o65b2o$11bo110bo138b
2o166bobo196bo90bo$122bo111b2o85b2o85b2o20b2o62b2o25bo59b2o25bo66b
2o25bo15bobo$122bo74bo37bo86bo86bo85bo24bobo59bo24bobo66bo24bobo
15b2o8bobo$197bobo34bo86bo86bo24b2o59bo25bobo58bo25bobo65bo25bobo
25b2o$99bobo95b2o35b2o85b2o85b2o22bobo59b2o19bo5bo59b2o21bo3bo66b
2o21bo3bo27bo$11bobo86b2o23bo110bo197bo81b2o86bo93bo24bobo$12b2o
86bo23bobo105b4o83b4o83b4o82b4o19b2o62b4o21bo68b4o21bo24b2o$12bo
112bo23bo82bo6bo79bo2bo49bo33bo2bo82bo2bo83bo2bo90bo2bo47bo$8b2o
48b2o90b2o81bo3b2o81bo50bo35bo85bo86bo93bo$7bobo47b2o86b2o2b2o79b
3o5b2o77b3o51b3o30b3o83b3o23bo60b3o91b3o49bo$9bo49bo84bobo83bo86bo
86bo85bo25b2o59bo93bo50bo$135bo10bo368bobo204b3o6b2o$135b2o228bo
352bo12bobo$134bobo101b3o125b2o134b2o85b2o92b2o32bo13bo$240bo124b
2o3bobo35b2o84b2o5bo2bo76b2o5bo2bo83b2o5bo2bo31b3o5b3o$239bo130b2o
35bobo7b3o29bo43bobo6b2o20bo4bobo48bobo6b2o83bobo6b2o40bo$136b3o
184b2o46bo35bo9bo30bo44bo31b2o2b2o49bo93bo51bo$136bo15bo170bobo40b
o39b2o10bo29b3o41b2o30b2o4bo48b2o35b3o54b2o35b3o$137bo15bo169bo40b
obo46b3o29bo10b2o47bo4b2o30b2o47b3o35b2o54b3o35b2o$151b3o164bo46b
2o48bo30bo9bo48b2o2b2o31bo86bo41bo51bo$276bo41b2o94bo29b3o7bobo47b
obo4bo20b2o6bobo76b2o6bobo42bo40b2o6bobo$275bo41bobo3b2o129b2o75bo
2bo5b2o76bo2bo5b2o41b3o5b3o31bo2bo5b2o$153bobo119b3o44b2o208b2o85b
2o45bo13bo32b2o$153b2o169bo339bobo12bo$143bo10bo363bobo144b2o6b3o$
o49bo92bobo139bo86bo86bo58b2o25bo86bo42bo50bo$b2o47bobo86b2o2b2o
131b2o5b3o30b3o51b3o84b3o59bo23b3o84b3o41bo49b3o$2o48b2o86b2o137b
2o3bo35bo50bo86bo85bo86bo93bo$47bo92bo23bo111bo6bo33bo49bo2bo83bo
2bo82bo2bo83bo2bo42bo47bo2bo$46b2o115bobo23bo90b4o83b4o83b4o61b2o
19b4o61bo21b4o42b2o24bo21b4o$46bobo115bo23b2o89bo149bo88b2o85bo66b
obo24bo$91b2o95bobo89b2o85b2o60bobo22b2o58bo5bo19b2o59bo3bo21b2o
38bo27bo3bo21b2o$90bobo188bo86bo60b2o24bo57bobo25bo58bobo25bo38b2o
25bobo25bo$92bo74bo112bo86bo86bo58bobo24bo59bobo24bo38bobo8b2o15bo
bo24bo$167bo112b2o85b2o63b2o20b2o58bo25b2o59bo25b2o48bobo15bo25b2o
$48bo118bo85b2o177bobo146bo96bo$48b2o83bo113bobo3bobo176bo148b2o
119b2o$47bobo82bobo113b2o3bo90bo235bobo119bobo10bo$133bo114bo94bo
4bobo277bo73bo11bobo$245bo97b3o2b2o227b2o48bo86b2o$127b3o111b2obob
o81b2obob2o14bo65b2obob2o6b2o71b2obob2o6b2o60bobo3b2o4b2obob2o6b2o
20b2o2b3o52b2obob2o6b2o$241bob2obo81bob2obo81bob2obo7bo72bob2obo7b
o63bo3bobo3bob2obo7bo20b2o58bob2obo7bo9b2o$246bobo84bobo84bobo6b3o
74bobo6b3o64bo10bobo6b3o19bo62bobo6b3o6bobo2b2o$246b2obo83b2obo10b
2o71b2obo7bo74b2obo7bo75b2obo7bo82b2obo7bo6bo3b2o$7b2o240bo86bo9b
2o5b2o68bo85bo86bo29b3o61bo10b2o8bo$8b2o239b2o85b2o10bo4bobo67b2o
84b2o85b2o28bo63b2o8bobo$7bo345bo273bo74bo2$30b3o680b2o$30bo681b2o
$31bo161b2o508b3o8bo$193bobo509bo$193bo510bo3$104bo$104b2o$103bobo
77b2o$182b2o$184bo2$131b2o$132b2o$131bo3$110b3o$112bo$111bo2$158b
3o$158bo$159bo!

Sample occurrences

There are 5 sample soups in the Catagolue:

Unofficial symmetries

SymmetrySoupsSample soup links

b3s23osc_stdin 4     

oscthread_stdin 1  

Comments (0)

There are no comments to display.

Please log in to post comments.

Catagolue — the largest distributed search of cellular automata.