(anonymous)  •  log in  
Home   •   Rules   •   Objects   •   Census   •   Software   •   Syntheses   •   Statistics

messless_12h

??

There is currently no description assigned to this pattern.

This pattern is a pattern.
This pattern runs in standard life (b3s23).

Sample occurrences

There are 260 sample soups in the Catagolue:

Official symmetries

SymmetrySoupsSample soup links

C1 6         

C2_2 1  

C2_4 3    

C4_1 57                                                                                

C4_4 138                                                                                                                                                                                                 

D2_+1 1  

D2_x 2   

D4_+1 7          

D4_+2 13                  

D4_+4 3    

D4_x1 5       

D4_x4 16                       

D8_1 6         

D8_4 2   

Comments (7)

Displaying comments 1 to 7.

On 2020-06-03 at 19:13:55 UTC, Someone wrote:

RLE:x = 32, y = 32, rule = B3/S23 b2o4b3o3b4o2bob2o3b5o$2o2b2obo2b4ob2ob2o6b3ob2o$o2b2obo4bobobo4bobob2o bo3bo$2ob5o2bob2o3b2o2bo2b2ob3o$5o3bo2b2o2b2obo7b5o$2o2b2obo3bo2bob3ob o2b2obobobo$2b2o5b4o4bo2b2o2bo3b2o$2b2ob4obo2b2o3bobo3bobobob2o$5bo4b 3o2b3ob2obobo2bo3bo$obo5b10o4bo2bo5bo$o2bo2bo3b2o4b2o2b6o2bobo$2bo2b4o bobob3obo2b3ob3ob2o$2o6bo5b2o4bob2obob2obo$bob3obo3bo3bobo4bobo3b4o$3b ob2ob3o2bo5b2obobobo4bo$2o2b2o2b4o3b2ob3ob2o3bob3o$3obo3b2ob3ob2o3b4o 2b2o2b2o$o4bobobob2o5bo2b3ob2obo$4o3bobo4bobo3bo3bob3obo$bob2obob2obo 4b2o5bo6b2o$b2ob3ob3o2bob3obobob4o2bo$bobo2b6o2b2o4b2o3bo2bo2bo$o5bo2b o4b10o5bobo$o3bo2bobob2ob3o2b3o4bo$2obobobo3bobo3b2o2bob4ob2o$2b2o3bo 2b2o2bo4b4o5b2o$bobobob2o2bob3obo2bo3bob2o2b2o$b5o7bob2o2b2o2bo3b5o$2b 3ob2o2bo2b2o3b2obo2b5ob2o$o3bob2obobo4bobobo4bob2o2bo$2ob3o6b2ob2ob4o 2bob2o2b2o$b5o3b2obo2b4o3b3o4b2o!

On 2020-04-03 at 00:12:29 UTC, Someone wrote:

Fourth appearance in C1 on 2 April 2020

On 2020-03-06 at 00:27:41 UTC, Someone wrote:

Third appearance in C1 on 5 March 2020

On 2020-02-04 at 00:20:45 UTC, Someone wrote:

Second appearance in C1 on 3 February 2020

On 2020-01-10 at 17:58:33 UTC, Someone wrote:

First appearance in C1 on 10 January 2020

On 2019-01-21 at 20:31:31 UTC, ozziene@yahoo.co.uk wrote:

Now we have one in D8 1

On 2018-12-16 at 08:34:44 UTC, Someone wrote:

First

Please log in to post comments.

Catagolue — the largest distributed search of cellular automata.